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Abstract-- Today’s Internet is a massive, distributed network 

which continues to explode in size as e commerce and related 
activities grow. The heterogeneous and largely unregulated 
structure of the Internet renders tasks like dynamic routing, 
optimized service provision, service level verification and 
detection of anomalous/malicious behavior extremely 
challenging. The problem is compounded by the fact that one 
cannot rely on the cooperation of individual servers and routers 
to aid in the collection of network traffic measurements vital for 
these tasks. This paper introduces network tomography, a new 
field which we believe will benefit greatly from the wealth of 
statistical theory and algorithms. It focuses on the application of 
pseudo-likelihood methods and tree estimation formulations for 
network monitoring. 
 

Index Terms-- Network tomography, pseudo-likelihood, 
topology identification, tree estimation. 

I.  INTRODUCTION 
ARGE-SCALE network inference problems can be 
classified according to the type of data acquisition and 
the performance parameters of interest. To discuss 

these distinctions, we require some basic definitions. Consider 
the network depicted in Fig. 1. Each node represents a 
computer terminal, router or sub-network (consisting of 
multiple computers/routers). A connection between two nodes 
is called a path. Each path consists of one or more links—
direct connections with no intermediate nodes. The links may 
be unidirectional or bidirectional, depending on the level of 
abstraction and the problem context. Each link can represent a 
chain of physical links connected by intermediate routers. 
Messages are transmitted by sending packets of bits from a 
source node to a destination node along a path which 
generally passes through several other nodes. Broadly 
speaking, large scale network inference involves estimating 
network performance parameters based on traffic 
measurements at a limited subset of the nodes. Vardi (1996) 
was one of the first researchers to rigorously  
 
study this sort of problem and he coined the term network 
tomography due to the similarity between network inference  
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and medical tomography. Two forms of network tomography 
have been addressed in the recent literature: (1) link-level 
parameter estimation based on end-to-end, path-level traffic 
measurements [1] and (2) sender–receiver path-level traffic 
intensity estimation based on link-level traffic measurements 
[2]. In link-level parameter estimation, the traffic 
measurements typically consist of counts of packets 
transmitted and/or received between source and destination 
nodes or time delays between packet transmissions and 
receptions. The goal is to estimate the loss rate or the queuing 
delay on each link. The measured time delays are due to both 
propagation delays and router processing delays along the 
path. The path delay is the sum of the delays on the links that 
comprise the path; the link delay comprises both the 
propagation delay on that link and the queuing delay at the 
routers that lie along that link. A packet is dropped if it does 
not successfully reach the input buffer of the destination node. 
Link delays and occurrences of dropped packets are inherently 
random. Random link delays can be caused by router output 
buffer delays, router packet servicing delays and propagation 
delay variability. 

                         
Fig. 1.   An arbitrary virtual multicast tree with four receivers  
 
Dropped packets on a link are usually due to overload of the 
finite output buffer of one of the routers encountered when 
traversing the link, but may also be caused by equipment 
downtime due to maintenance or power failures. Random link 
delays and packet losses become particularly substantial when 
there is a large amount of cross traffic competing for service 
by routers along a path. In path-level traffic intensity 
estimation, the measurements consist of counts of packets that 
pass through nodes in the network. In privately owned 
networks, the collection of such measurements is relatively 
straightforward. Based on these measurements, the goal is to 
estimate how much traffic originated from a specified node 
and was destined for a specified receiver. The combination of 
the traffic intensities of all these origin– destination pairs 
forms the origin–destination traffic matrix. In this problem not 
only are the node-level measurements inherently random, but 
the parameter to be estimated (the origin–destination traffic 
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matrix) must itself be treated not as a fixed parameter, but as a 
random vector. Randomness arises from the traffic generation 
itself, rather than perturbations or measurement noise. The 
inherent randomness in both link-level and path level 
measurements motivates the adoption of statistical 
methodologies for large-scale network inference and 
tomography. Many network tomography problems can be 
roughly approximated by the (not necessarily Gaussian) linear 
model 

ε+= tt AXY                                       (1) 
 

where Yt is a vector of measurements (e.g., packet counts or 
end-to-end delays) recorded at a given time t at a number of 
different measurement sites, A is a routing matrix, ε  is a 
noise vector and Xt is a vector of time-dependent packet 
parameters (e.g., mean delays, logarithms of packet 
transmission probabilities over a link or the random origin–
destination traffic vector). In some cases the vector Xt is a 
random vector with an underlying parameterized distribution f 
(Xt | θt), and it is the parameters θt that interest us. Typically, 
but not always, A is a binary matrix (the i, j th element is 
equal to 1 or 0) that captures the topology of the network. In 
this paper, we consider the problems of using the observations 
Yt to estimate θt, Xt or A (see Section 4). What sets the large-
scale network inference problem (1) apart from other network 
inference problems is the potentially very large dimension of 
A which can range from a half a dozen rows and columns for 
a few packet parameters and a few measurement sites in a 
small local area network, to thousands or tens of thousands of 
rows and columns for a moderate number of parameters and 
measurements sites in the Internet. The associated high-
dimensional problems of estimating Xt are specific examples 
of inverse problems. Inverse problems have a very extensive 
literature [14]. Solution methods for such inverse problems 
depend on the nature of the noise ε  and the A matrix, and 
typically require iterative algorithms since they cannot be 
solved directly. In general, A is not full rank, so that identify-
ability concerns arise. Either one must be content to resolve 
only linear combinations of the parameters or one must 
employ statistical means to introduce regularization and 
induce identify-ability. In most of the large-scale Internet 
inference and tomography problems studied to date, the 
components of the noise vector ε  are assumed to be 
approximately independent Gaussian, Poisson, binomial or 
multinomial distributed. When the noise is Gaussian 
distributed with covariance independent of AXt, methods such 
as recursive linear least squares can be implemented using 
conjugate gradient, Gauss–Seidel and other iterative equation 
solvers. When the noise is modeled as Poisson, binomial or 
multinomial distributed, more sophisticated statistical 
methods, such as reweighed nonlinear least squares, 
maximum likelihood via expectation–maximization (EM) and 
maximum a posteriori via Markov chain Monte Carlo 
(MCMC) algorithms, become necessary.  

II.  TECHNICAL WORK PREPARATION 
In developing methods to perform network tomography, 

there is a trade-off between statistical efficiency (accuracy) 
and computational overhead. In the past, researchers have 
addressed the extreme computational burden posed by some 
of the tomographic problems, developing suboptimal but 
lightweight algorithms, including a fast recursive algorithm 
for link delay distribution inference in a multicast framework 
[3] and a method-of-moments approach for origin–destination 
matrix inference [4]. More accurate but computationally 
burdensome approaches have also been explored, including 
maximum-likelihood methods [5], but in general they are too 
intensive computationally for any network of reasonable 
scale.  
 

A.  Pseudo-Likelihood Approach 
A unified pseudo-likelihood approach [6] that eases the 

computational burden but maintains good statistical 
efficiency. The idea of modifying likelihood is not new, and 
many modified likelihood models have been proposed, for 
example, pseudo-likelihood for Markov random fields, partial 
likelihood for hazards regression and quasi-maximum 
likelihood for finance models. In this section, we describe the 
pseudo-likelihood approach. The network tomography model 
we consider in this section is a special case of (1), in which 
the error term Є is omitted for further simplification. Hence 
the model can be rewritten as 
 

                                Y = AX                   (2) 
 
where X = (X1, . . . , XJ )ּי  is a J -dimensional vector of 
network dynamic parameters (e.g., link delay, traffic flow 
counts at a particular time interval), Y = (Y1, . . . , YI ) is an I -
dimensional vector of measurements and A is an I ×J routing 
matrix. As mentioned before due to the temporal and spatial 
correlations between network traffic, but it is a good first-step 
approximation. Furthermore, we assume that  
 

( )jjj fX θ≈                                      (3) 

                             
for j=1…J and where fj is a density function and θj is its 
parameter. Then the parameter of the whole model is θ = (θ1.  
. . θJ). The main idea of the pseudo-likelihood approach is to 
decompose the original model into a series of simpler sub 
problems by selecting pairs of rows from the routing matrix A 
and to form the pseudo-likelihood function by multiplying the 
marginal likelihoods of such sub problems. Let S denote the 
set of sub problems by selecting all possible pairs of rows 
from the routing matrix A: S = {s = (i1, i2) : 1 ≤ i1 < i2 ≤ I }. 
Then for each sub problem s Є S, we have 
 

sss XAY =                                              (4) 
 

where Xs is the vector of network dynamic components 
involved in the given sub problem s, As is the corresponding 
sub-routing matrix and Ys = (Yi1,Yi2 )’ is the observed 
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measurement vector of s. Let өs be the parameter of s and let 
ps(Ys ;өs ) be its marginal likelihood function. Usually sub 
problems are dependent, but ignoring such dependencies, the 
pseudo-likelihood function can be written as the product of 
marginal likelihood functions of all sub problems, that is, 
given observation y1. . . yT , the pseudo-log-likelihood 
function is defined as 

( ) ( )s
T
s

s

Ss

T

tT
p ylyyL θθ ;;...

11 ∈=
ΣΣ=                       (5) 

 
where  ls(Ys; θs) = logps (Ys ; θs) is the log-likelihood function 
of sub problems. Maximizing the pseudo-log-likelihood 
function Lp gives the maximum-pseudo likelihood estimate 
(MPLE) of parameter ө. Maximizing the pseudo-likelihood is 
not an easy task because Lp(y1, . . . , yT ; θ) is a summation of 
many functions. Since the maximization of the pseudo-
likelihood function is a typical missing value problem, a 
pseudo-EM algorithm (a variant of the EM algorithm) [6], is 
employed to maximize the function Lp(y1, . . . , yT ; θ). Let 
ls(Xs ; θs) be the log-likelihood function of a sub problem s 
given the complete data Xs and let ө(k) be the estimate of ө 
obtained in the kth step. The objective function Q(θ, θ(k)) to be 
maximized in the (k + 1)st step of the pseudo-EM algorithm is 
defined as 
 

( ) ( )s
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ΣΣ=                        (6) 

 
which is obtained by assuming the independence of sub 
problems in the expectation step. The starting point of the 
pseudo-EM algorithm can be arbitrary, but just as in the EM 
algorithm, care needs to be taken to ensure that the algorithm 
does not converge to a local maximum. There are several 
points worth noting in constructing the pseudo-likelihood 
function: 
1 Selecting three or more rows each time may also be 
reasonable to construct a pseudo-likelihood function, but there 
is a trade-off between the computational complexity incurred 
and the estimation efficiency achieved by taking more 
dependence structures into account. The experience with the 
two examples we discuss later shows that selecting two rows 
each time gives satisfactory estimation results while keeping 
the computational cost within a reasonable range. 
2. Currently all possible pairs are selected to construct the       
pseudo-likelihood function, but a subset can be judicious 
chosen to reduce the computation. The pseudo-likelihood is 
obtained by assuming all subproblems to be independent. 
Although this assumption is frequently violated, we obtain, 
under mild conditions, the consistency and asymptotic 
normality of maximum pseudo-likelihood estimates [6]. 

In summary, the pseudo-likelihood approach keeps a good 
balance between the computational complexity and the 
statistical efficiency of the parameter estimation. Even though 
the basic idea of divide-and-conquer is not new, it is very 
powerful when combined with pseudo-likelihood for large 
network problems. 

B.  Topology Identification 
 In the previous section it was assumed that the network 
topology was known; this knowledge is essential for 
successful application of the techniques described. When the 
topology is unknown, tools such as trace route can be used in 
an attempt to identify it. However, these tools rely on close 
cooperation from the network internal devices and are 
incapable of detecting certain types of devices. The tools can 
thus determine the topology only if the network is functioning 
properly and network elements are prepared to cooperate and 
reveal themselves. These conditions are often not met and are 
becoming more uncommon as the Internet grows in size and 
speed; there is little motivation for extremely high-speed or 
heavily loaded switches to spend time processing requests that 
are not central to the process of communication. Also, the fear 
of malicious attacks (such as denial of service attacks) forces 
network administrators to block access to some diagnosis 
tools on routers (such as ping or the ability to respond to 
ICMP packets), preventing their use for legitimate purposes. It 
is therefore desirable to develop a method for estimating 
topology that uses only measurements taken at the network 
edge, obtained without cooperation from internal devices. We 
consider a single source that is communicating with multiple 
receivers (denote the set of receiver nodes by R). The physical 
network topology can be represented as a directed graph, 
where each vertex represents a physical device (e.g., a router 
or a switch) and the edges correspond to the connections 
between those devices. In our approach we use only end-to-
end measurements and do not use any network device 
information, which forces us to rely solely on traffic and 
queuing characteristics.  

 
Fig. 2.  (a) Physical topology and (b) corresponding logical topology. The 
darker unnumbered nodes are devices where no branching of traffic occurs 
and therefore do not appear in the logical topology. 
 
 With this limited knowledge, it is only possible to identify 
the so-called logical topology (see Fig. 2, for an illustration of 
the distinction between logical and physical topologies). In the 
logical topology, each vertex represents a physical network 
device where traffic branching occurs, that is, where two or 
more source–destination paths diverge. The set of vertices 
thus corresponds to a subset of the traversed physical devices. 
An edge is included between two vertices if traffic travels 
between the corresponding network devices and does not pass 
through any other devices in the included subset. Each edge 
corresponds to a connection between two physical devices, 
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but the connection may include several network devices 
where no traffic branching occurs. We assume that the routes 
from the sender to the receivers are fixed during the 
measurement period, in which case the topology is a tree-
structured graph, as in Fig. 2. Every node has at least two 
children, apart from the root node (which has one) and the leaf 
nodes (which have none). If all internal nodes have exactly 
two children, then the tree is called binary. In the following 
discussion, we focus on the unicast measurement procedure [7] 
[5] and the hierarchical clustering interpretation of the 
topology identification problem expounded by [5]. In the 
topology identification problem the quantity of interest is A, 
the routing matrix. Note that the entries of this matrix are only 
0 or 1. The measurements Yt are obtained through special 
measurement techniques described below and the partial 
ordering of Yt can be used to determine A. The matrix 
estimation formulation above is not well suited to the 
topology identification problem, so we formulate it below as a 
tree estimation exercise. One can also regard the topology 
discovery problem as hierarchical clustering. Within such a 
framework one wants to identify clusters of receivers that 
share certain properties. In particular, we want to identify the 
clusters of receiver nodes whose paths from the source node 
are the same up to a certain point. 
 Our goal is to identify the logical topology. With each 
internal node in a tree we associate a metric value γk. We 
consider only metrics that have a monotonic property: An 
internal node has a smaller metric value than any of its 
descendants (e.g., in Fig. 2). Examples of such metrics in 
networking are the average delay or delay variance 
experienced by a packet traveling from the source to node k. 
Since we do not know the topology, we cannot estimate the 
metric values directly, but it is possible to estimate them 
indirectly. Let a(i, j) denote the nearest common ancestor of a 
given receiver pair i, j Є R [e.g., a (4, 9) = 2]. Define γij ≡ 
γa(i,j). The value γij can be regarded as a characterization of 
the shared portion of the paths from the root to i and j. The 
shared path for a pair of nodes (i, j) is the path from the root to 
node a(i, j). In the context of hierarchical clustering, the γij 
can be interpreted as similarity values. Note that there is an 
enforced symmetry in this model: γij = γji . Knowledge of the 
pairwise metric values and the monotonicity property suffices 
to completely identify the logical topology. 
 For example, referring to Fig. 2, the metric γi7 is greater 
than γi7 for all i Є R \ {6, 7}, revealing that nodes 6 and 7 have 
a common parent in the logical tree. This property can be 
exploited recursively to devise a simple and effective bottom-
up merging algorithm that identifies the complete, logical 
topology. These same techniques are used in agglomerative 
hierarchical clustering methods [8] [9] [10]. 
C.  Likelihood formulation and Optimization Strategies  
In general, we do not have access to the exact pair-wise metric 
values and can only observe a noisy and distorted version of 
them, usually obtained by actively probing the network. If we 
have a statistical model that relates the underlying (unknown) 
metric values and the measurements, we can formulate the 

topology identification problem as a maximum-likelihood 
estimation exercise. 
 
    1)   Bottom-up agglomerative procedure.  
In a scenario where one can determine the true pair-wise 
similarity metrics γ, it is possible to reconstruct the tree 
topology using a simple agglomerative bottom-up procedure. 
When we only have access to the measurements x, conveying 
indirect information about γ, we can still develop a bottom-up 
agglomerative clustering algorithm to estimate the true 
topology. This method follows the same conceptual 
framework as many hierarchical clustering techniques, and 
proceeds by repeatedly applying four steps: 
1. Choose the pair of nodes with the highest similarity. 
2. Merge the pair into a new node/cluster. 
3. Update the similarities between the new node and the 
former existing nodes. 
4. Repeat the procedure until only one node is left. 
The crucial step is the update of the similarity values, and in 
many hierarchical clustering algorithms the update procedure 
is chosen via application-dependent heuristics [10]. In our 
model-based approach, which relates γ to x, the appropriate 
update of similarities arises naturally from the likelihood 
formulation and leads to the agglomerative likelihood tree 
(ALT) algorithm. The algorithm commences by considering a 
set of nodes S, initialized to the receiver set R, and forming 
the estimates of the pair-wise similarity metrics for each pair 
of nodes in the set S, given by  
 

( ) ( )( )γγγ ||maxarg jiijijij xfxf +=  

for i, j Є S, i = j                (7) 
 
 One expects the above estimated pair-wise similarities to be 
reasonably close to the true similarities γ. Consider the pair of 
nodes such that γij is greatest, that is, γij >= γlm, for all l,m Є  
S. We infer that i and j are the most similar nodes, implying 
that they have a common parent k in the tree. Assuming that 
our decision is correct, the tree structure and the likelihood 
impose some structure on the true similarities, providing a 
logical way to perform the merging of similarities. The 
algorithm proceeds by replacing nodes i and j with their 
parent k in S. For a given node k, we denote by Rk the set of 
receivers which are descendants of k in the tree. Thus, at the 
initial stage of the algorithm Ri = {i}, and after the update 
step, Rk = Ri U Rj.  
We update the similarity estimates in S according to  
 

( ) ( )γγγγ
γ

||maxarg lrlrrlrlRlkkl xfxf +Σ≡=
∈

 

where l Є S \ {k}  (8) 
 

These two steps, selecting the pair of nodes with maximum 
estimated similarity for merger and updating the similarities, 
are repeated until there is a single node in S. [5] formalized the 
concepts behind this algorithm and showed that if the 
underlying tree is binary and the estimated pair-wise 
similarities are sufficiently close to the true similarities, then 
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the ALT algorithm is equivalent to the MLT and identifies the 
true topology. 
 
    2)   Markov chain Monte Carlo approach. 
 Despite the simplicity of the ALT algorithm, it is a greedy 
procedure based on local decisions that involve the estimated 
pair-wise similarities. If an incorrect local decision is made at 
some stage in the algorithm, then it cannot be reversed. In the 
topology estimation problem the measurement process is 
generally distributed, relying on clocks and counters at 
numerous network sites. It is frequently the case that several 
of the measurements are substantially more inaccurate than 
the rest. The ALT algorithm compares pair-wise similarity 
estimates, each of which is formed from only a subset of the 
available measurements and is thus vulnerable to the effect of 
the local inaccuracies. Unlike the ALT, the MLT estimator 
takes a global approach: the expression to be optimized in (8) 
involves a contribution from all of the measurements, and 
identification of the MLT requires a simultaneous 
consideration of all the pair-wise similarities. The price to pay 
is that identification of the MLT involves a search over the 
entire forest F. In this section we propose a random search 
technique that efficiently searches the forest of trees and, most 
importantly, focuses on the likely regions of the forest. For a 
given set of measurements x we can regard the profile 
likelihood L(x|T) as a discrete distribution over the set of 
possible tree topologies F (up to a normalizing factor). One 
way to search the set F is to sample it according to this 
distribution. The more likely trees are sampled more often 
than the less likely trees, making the search more efficient. 
The sampling can be implemented using the Metropolis– 
Hastings algorithm [11]. For this we need to construct a 
Markov chain with state space F. We allow only certain 
transitions. For a given state (a tree) si Є F we can move to 
another state (tree) using “birth moves” and “death moves” as 
illustrated in Fig. 3. Details of the entire procedure can be 
found in [5]. The Metropolis–Hastings algorithm is a basic 
sampling approach, which, despite its simplicity, results in 
improved performance compared to ALT; the incorporation of 
more sophisticated sampling strategies is an avenue for 
developing improved topology identification procedures. To 
achieve our (approximate) solution of (8), we simulate the 
constructed chain and keep track of the tree we visit that has 
the largest likelihood; the longer the chain is simulated, the 
higher the chance of visiting the MLT at least once. 

 
 
Fig. 3.  Illustration of the birth and death moves in the MCMC search 
algorithm. The birth move selects a node with more than two children chooses 
two of these children and inserts an extra node as the new parent of these 
children. The death move chooses a node with two children and deletes that 
node. 
 
Although theoretically the starting point (initial state) of the 
chain is not important, provided that the chain is simulated for 
long enough, starting at a reasonable point improves the 
chance of visiting the MLT in a reasonable simulation period. 
Starting the chain simulation from the tree obtained using the 
ALT algorithm is a reasonable approach, since this is a 
consistent estimator and so one expects the resulting tree to be 
“close” (in terms of the number of MCMC moves) to the 
actual MLT. This is the major reason the simple Metropolis–
Hastings sampling procedure works reasonably well. 
Although inefficiencies can prevent it from visiting more than 
a small region of the forest, it does visit much of the region 
near the MLT early in its evolution and can thus “correct” 
local errors in the ALT. 

One drawback to the likelihood criterion is that it places no 
penalty on the number of links in the tree. As a consequence, 
trees with more links can have higher likelihood values (since 
the extra degrees of freedom they possess allow them to fit the 
data more closely). This is an instance of the classic  “over-
fitting” problem associated with model estimation [12] and  
can be remedied by applying regularization, that is, by  
replacing the simple likelihood criterion with a penalized 
likelihood criterion, 

 
( ) )(|logmaxarg TNTxT

FT
λλ −=

∈
l           (9) 

 
where n(T ) is the number of links in the tree T and λ ≥ 0 is a 
parameter, chosen by the user, to balance the trade-off 
between fitting to the data and controlling the number of links 
in the tree. We can use an MCMC method in a similar fashion 
as before to approximately find the solution of (9). Minimum 
description length principles [12] motivate a penalty that is 
dependent on the size of the network (in terms of the number 
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of receivers). However, other model selection techniques lead 
to choices of different penalties [13]. 

Deploying measurement probing schemes and evaluating 
inference algorithms for larger networks is the next key step 
in network monitoring.  The impact of network monitoring, 
on network control and provisioning could become the 
application area of most practical importance. Admission 
control, flow control, service level verification, service 
discovery and efficient routing could all benefit from up-to-
date and reliable information about link and router level 
performances. 
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