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 Abstract--The paper discusses the convergence analysis of a 
simple but widely used LMS Algorithm, Normalized LMS 
algorithm, Block LMS Algorithm and Frequency Domain 
Adaptive Algorithm for Adaptive Equalization. Also the analysis 
of Godard’s ‘Constant Modulus Algorithm’, the popular blind 
equalization algorithm is done.  

Algorithms are implemented using MATLAB Software. 
Analysis of Mean Square Error for all the algorithms is done. The 
effects of eigen value spread, step-size parameter and Filter 
Length on the Convergence of LMS Algorithm are studied and 
results are obtained. Also results for NLMS showing its 
advantages over LMS are obtained. The comparative analysis of 
LMS with BLMS and FDAF algorithms is presented. Convergence 
results for CMA with and without modulation are obtained. 

 
Index Terms--Adaptive Equalization, Block LMS, Blind 

Equalization, Constant Modulus Algorithm, FDAF, Least Mean 
Square Algorithm, Mean Square Error, Normalized LMS   

I.  INTRODUCTION 
 

NTERSYMBOL interference (ISI) caused by multipath in 
band limited time dispersive channels distorts the transmitted 
signal, causing bit errors at the receiver. ISI has been 

recognized as the major obstacle to high speed data 
transmission. In wireless world high speed data means utilizing 
available bandwidth more efficiently, leading to more bits in 
every available Hertz of spectrum. As more bits per Hertz are 
sent, the bits overlap and interfere with each other, and reduce 
the received signal quality unless special techniques, called 
‘Channel Equalization’ are used. [1]  

 The term equalization can be used to describe any signal 
processing operation that minimizes ISI. In radio channels, a 
variety of adaptive equalizers can be used to cancel interference 
while providing diversity. Since the mobile fading channel is 
random and time varying, equalizers must track the time 
varying characteristics of the mobile channel, and thus are 
called adaptive equalizers. These equalizers thus use some 
adaptive algorithms for continuously changing its filter 
characteristics over time. These adaptive algorithms are 
classified into two distinct approaches ‘Stochastic Gradient 
Approach’ and ‘Least-squares Estimation’. [2]  

The conventional Least Mean Square (LMS) algorithm and 
Normalized LMS Algorithms are Stochastic Gradient 
Algorithms, and Recursive Least Squares (RLS) is an example 
of Least-squares Algorith1m. 
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The paper is organized as follows: In section 2 theory about 
LMS, NLMS, BLMS and FDAF Adaptive Algorithms is 
discussed. Section 3 includes Matlab simulation results for 
performance parameters and comparison of above Algorithms. 
Section 4 presents theory and simulation results for Constant 
Modulus blind equalization algorithm with and without 
modulation. 

II.  ADAPTIVE ALGORITHMS 

A.  LMS Algorithm 
The LMS algorithm is an important member of ‘Stochastic 

gradient algorithms’. A significant feature of the LMS 
algorithm is its simplicity that has made it the standard against 
which other linear adaptive filtering algorithms are 
benchmarked. 

It is a linear adaptive filtering algorithm, which consist of 
two basic processes: 

1. A filtering process, which involves (a) computing the 
output of a linear filter in response to an input signal and (b) 
generating an estimation error by comparing this output with a 
desired response. 

2. An adaptive process, which involves the automatic 
adjustment of the parameters of the filter in accordance with the 
estimation error. [2] 
 The combination of these two processes working 
together constitute a feedback loop, as shown in block diagram 
below, From the block diagram it can be seen that the filter 
output )(ny is given as, 

                    )()()( nxnwny T=                                                 (1) 
The error,  

         )()()( nyndne −=                                                 (2) 

and adapting filter weight, 
 

                  )()()()1( nenxnwnw µ+=+                                  (3) 
    Where, 

  µ  - Step Size parameter. 
          )(nx  - Input Signal vector of tap inputs. 
          )(ne  - Error signal. 
          )(nw - Coefficients of filter at time n. 
Equation (1) to (3) represents LMS Algorithm, where the 
optimization criterion is the LMS error. Hence the Mean Square 
Error is minimized at every time instant. 
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Fig. 1 Block Diagram of Adaptive LMS Equalizer [1]  
  

B.   Normalized LMS Algorithm (NLMS)      
In standard LMS Algorithm, the adjustment applied to 

the tap-weight vector is directly proportional to the tap-input 
vector x(n).Therefore, when x(n) is large, the LMS filter suffers 
from a gradient noise amplification problem. This difficulty is 
overcome by ‘Normalized LMS Algorithm’. Here the 
adjustment applied to the tap-weight vector at iteration n+1 is 
‘Normalized’ with respect to the squared Euclidean norm of the 
tap-input vector x(n) at iteration n. [2] 
 Thus structurally, Normalized LMS filter is same as 
that of standard LMS filter. Only difference is the way weight 
vector is updated as shown below, 

                )()(
)(

)()1(
2

nenx
nx

nwnw µ
+=+                             (4) 

Comparing the recursions of Eq(3) and (4), setting 
2)(/)( nxn µµ =  makes normalized LMS filter as an LMS 

filter with a time-varying step-size parameter. Thus normalized 
LMS algorithm exhibits a rate of convergence that is potentially 
faster than that of the standard LMS algorithm. [8] 

The problem associated with NLMS is that, in 
overcoming the gradient noise amplification problem, it 
introduces a problem of its own, namely that when the tap-
inputs are small, the step size value is divided by a small value 
for the squared norm 2)(nx . To overcome this problem the 

recursion equation (4) is modified as, 

             )()(
)(

)()1(
2

nenx
nx

nwnw
+

+=+
δ

µ                    (5) 

Where, δ  – Small initial value (δ  >0) 
 

C.  Block LMS Algorithm (BLMS) 
   The recursion in eq(3) is done each time a new 

sample is received. Alternately if the weights are kept fixed 
until N (No. of filter taps) data samples are received and then 
incorporate this information to update the weights only once 
during this period, the weight update will be,  
 )1()1(2)1()( −+−++−+=+ LneLnxLnwLnw µ            (6)  
 

Where, 1 ≤ L  ≤ N  is an integer. [9] 
By substitution eq (6) becomes, 

∑
−

=

+++=+
1

0

)()(2)()(
L

m

mnemnxnwLnw µ                             (7) 

Eq(7) represents ‘Block Recursion’. Note that the error terms in 
the summation all depend on the same weight vector )(nw i.e. 
       ).1(,,1,0)()()( −−−−−=+−+=+ Lmmnymndmne  

Where,       )()()( nwmnxmny T +=+                                     (8) 
Since eq(7) is a block update that operates at a lower sampling 
rate than that of the incoming data, a new time index k is 
defined where one increment corresponds to L  increments of 
the original index n. We can substitute KLn= where ‘ n ’ is an 
integer multiple of ‘ k ’. By factoring the argument )( LKl +  on 
the left-hand side of eq(7) as Lk )1( + and dropping the explicit 
dependence of the weight vector on L , we have the following 
equivalent block update: 

∑

∑
−

=

−

=

+++=+

+++−+=+

1

0

1

0

)()(2)()1(

)()(2)1()(

L

m

L

m

mkLemkLxkwkw

mkLemkLxLkLwLkLw

µ

µ
           (9) 

Thus, k  refers to block time and n  denotes the original time 
index of the incoming data. The block LMS algorithm in eq(9) 
essentially minimizes the same MSE performance function as 
the non-block LMS algorithm in eq(3).  
 
D.   Frequency Domain Adaptive Filter Algorithm (FDAF) 
             The basic operation in a frequency-domain adaptive 
filter is the transformation of the input signal into a more 
desirable form before the adaptive processing. This is 
accomplished by discrete Fourier transforms (DFTs). The 
Overlap-save method is explained below. [9] 

Consider first the process of computing the filter 
output in eq(8). Let )(kw and )(kX be derived from the 
corresponding time-domain quantities as,  

            [ ]TT kwFkW 0....,..........,0),()( =                             (10) 

and [ ]{ }TNkNxkNxkNxNkNxFDiagkX )1(.,),........(),1(.,),........()( −+−−=  (11) 

According to the overlap-save method, N  output 
samples [ ]TNkNykNyky )1(.....,),........()( −+= from a linear 
convolution can be computed as 

          [ ])()( 1 kYFofcomponentsNlastky −=           (12) 

Where, )(kY is the frequency-domain output vector given as 
)()()( kWkXkY = .The input sequence in eq(11) contains N  

samples from the current block of data and another N  samples 
from the previous block, i.e. the data are being overlapped by 
N  points so that only N  new samples are introduced before 
the DFT is computed for each block update. Only the last N  
points of the IDFT of )()()( kWkXkY = are retained because 
the first N  terms correspond to a circular convolution. 
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            A similar technique can be employed to implement the 
block adaptive algorithm because the gradient in eq(12) is a 
linear correlation and the weights are fixed for the entire block 
of N  samples. The error terms are computed in the time 
domain according to 

)1(....,,.........0)()()( −=+−+=+ NmmkNymkNdmkNe  

and this block is grouped as  

[ ] )()()1(,),........()( kykdNkNekNeke T −=−+=   

where    [ ]TNkNdkNdkd )1(.,),........()( −+= , is transformed 
to the frequency domain as follows: 

               [ ]TT keFkE )(,0....,,.........0)( =                             (13) 

The error vector is augmented with N  zeros because N  terms 
of the output are discarded to implement the linear convolution 
in eq(12). Alternatively, one may view )(ke as having the same 
role in the correlation as )(kw does in the convolution, except 
that the zeros precede )(ke  because a correlation is basically a 
"reversed" convolution. Applying the same reasoning as was 
used to derive the block output, it is shown that the block 
gradient estimate is  
     [ ])()()(ˆ 1 kEkXFofcomponentsNfirstkv H−=             (14)  
Where, the first N  elements are retained. 

 The final step of the algorithm transforms this time-domain 
gradient into its frequency-domain counter-part, which is then 
added to )(kW  in order to generate the updated weights 

)1( +kW . Because )(kw is followed by N  zeros in eq(10), the 
gradient in eq(14) must be similarly augmented. The algorithm 
is thus given by, 

 [ ]TT kvFkWkW 0,..........,.........0),(ˆ2)()1( µ+=+         (15) 

this is equivalent to the update in eq (9) except that DFTs have 
been used to implement the output convolution and the gradient 
correlation. 
 

III.  MATLAB SIMULATION RESULTS 
 
A.   LMS Algorithm 
 
    1)   Convergence Rate 
  The convergence rate determines the rate at which the 
filter converges to its resultant state. Usually a faster 
convergence rate is a desired characteristic of an adaptive 
system. The simulation results for Convergence characteristics 
of standard LMS Algorithm are shown in figure 2 and 3. [4] 
 Fig 2 shows convergence characteristics for good 
telephone channel. Figure 3 shows another example of 
convergence characteristics where the channel impulse 
response is described by the Raised Cosine filter as shown 
below, 

          
,0

3,2,1)2(2cos15.0

⎪
⎩

⎪
⎨

⎧
=

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −Π

+
=

otherwise

n
W
n

hn      (16) 

Where, parameter W controls the amount of amplitude 
distortion increasing withW . 
The value of µ  is selected to satisfy the condition, 

 0 < µ  < 
max

2
λ

Where, λmax - maximum Eigen value of 

Autocorrelation matrix of input data.  

 
Fig. 2 Convergence of LMS for different step sizes 

 

 
Fig. 3 Convergence of LMS for Raised Cosine Channel with W =3.1  
 
    2)   Eigenvalue Spread  

Figure 4 shows the effect of eigen value spread on the 
convergence of LMS Algorithm. The value of µ  is chosen to 
be 0.075. 

 
Fig. 4 Effect of Eigenvalue spread, step size = 0.075 

 
From the result we see that increasing the eigen value 

spread has the effect of slowing down the rate of convergence 
of the adaptive filter [2] for example, when W =2.9, 
approximately 80 iterations are required to converge in the 
mean square, and the average squared error (after 500 
iterations) equals approximately 0.003.But for W =3.5, the 
equalizer requires approximately 200 iterations to converge in 
the mean square, and resulting average squared error equals 
approximately 0.04.  
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In figure 5 the ensemble-average impulse responses of 
the adaptive filter after 500 iterations for each of the four eigen 
value spreads of interest are shown. From figure we see that in 
each case the ensemble-average impulse response of the 
adaptive filter is very close to being symmetric with respect to 
the center tap and with minimum ISI values, as expected. 
  

 
Fig. 5 Impulse Response of Equalizer for different Eigenvalue spread. 

 
    3)  Filter Length 
 Filter length is another important performance 
parameter of adaptive systems. The length of the filter specifies 
how accurately a given system can be modeled by the adaptive 
filter. As shown in figure 6, as filter length is increased the 
MSE achieved is smaller, but the filter converges slowly.  
 

 
Fig 6 Convergence characteristics with different filter lengths 
 

B.   NLMS Algorithm 
Figure 7 shows convergence characteristics of NLMS 

for good telephone channel    

 
Fig. 7 Convergence of NLMS for Telephone Channel 

 
As stated earlier, NLMS converges faster than the 

standard LMS algorithm at very little extra cost of increased 
complexity. This is shown in figure 8 and 9.  

 

 
Fig. 8 Comparison of LMS & NLMS for good Telephone channel 
 

 
Fig. 9 Comparison of LMS & NLMS for Raised cosine channel 
  
 The simulation is carried for telephone channel and 
raised cosine channel with dispersion W =2.9. The experiment 
is carried to achieve equal value of MSE with both LMS and 
NLMS Algorithms.  Simulation Results above show very 
obvious reason why NLMS is very commonly used.  
 

C.  Performance comparison of LMS and BLMS 
 
 For wide-sense stationary signals, the steady-state 
weight vector and time constants of the BLMS algorithm are 
identical to those of the standard LMS algorithm (refer fig.10)  

The main difference is that the maximum value of the step 
size such that the algorithm is stable is now scaled down by a 
factor of L . 
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Fig. 10 Performance comparison of LMS and BLMS 

 
Where, LL µµ = is the effective step size. In fig.11 the channel 
used is a telephone channel with step size µ =0.045. If the 
input signal correlation matrix has a large eigen value spread, 
then the BLMS algorithm may converge more slowly than the 
LMS algorithm because of the tighter upper bound on µ . This 
is shown in fig.11 where the channel used is raised cosine 
channel with dispersion, W =3.5 and eigen value spread of 
46.8216.  
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Fig.11 Comparison of LMS and BLMS 
  
D.  Comparison of LMS and FDAF 
 
 As the overlap-save FDAF is an efficient 
implementation of the BLMS algorithm, it has the same 
convergence properties.   
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Fig. 12 Comparison of LMS and FDAF 
  

Also, the adaptive weights converge to the same Wiener 
weight vector, yielding the same steady-state (minimum) MSE. 
If a different step size is used for each adaptive weight, the 
convergence rate of the algorithm can be improved without 
increasing this minimum MSE. (Refer Fig.12) Fig.12 shows 
that FDAF has faster convergence rate than time domain LMS 
to achieve same MSE. The channel used is a good Telephone 
channel. Fig.13 shows convergence of FDAF for raised cosine 
channel with dispersion W =3.5.  
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Fig. 13 Convergence of FDAF for raised cosine channel 

 

IV.  SELF-RECOVERING (BLIND) EQUALIZATION 
   

In all the algorithms discussed earlier, it is assumed that a 
known training sequence is transmitted to the receiver for initial 
adjustment of equalizer coefficients. However in some 
applications it is desirable that the receiver synchronizes to the 
received signal and adjusts the equalizer without having a 
known training sequence. The typical examples are ‘Multipoint 
Data Networks’ and ‘Wireless communication’. 

In wireless communication systems, particularly in a mobile 
communications channel, it is impractical to employ a training 
sequence of long duration because of two reasons: 
1. The system cost involved in the repeated transmission of a 
known sequence to train the equalizer at the receiving end of 
the system is too high. 
2. The unavoidable presence of multipath fading makes it 
difficult to establish data transmission over the channel when 
there is outage in the system. Fading arises because the 
transmitted signal tends to propagate along several paths, each 
of different electrical length. [11]   

Thus need of fast converging equalization algorithms and 
capability of receiver to achieve adaptation without cooperation 
of the transmitter and cost of retransmission is of paramount 
importance for most applications. 

Godard’s Algorithm uses a cost function that characterizes 
the amount of intersymbol interference at the equalizer output 
independently of the data symbol constellation and of carrier 
phase. Godard proposed a cost function that is independent of 
carrier phase and has the property that its minimum leads to a 
small MSE i.e.                                                                                    
                            2)P

n
p aEG −= nz () P (                         (18) 

The value of p is chosen as 2 for simplicity, which leads to an 
algorithm simple to implement in a microprocessor based 
receivers.           
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Above case of Godard’s Algorithm with p =2 is called as 
‘Constant Modulus Algorithm’. 
 

A.  Performance Evaluation of CMA Algorithm 
  
 Figure 14 shows convergence of CMA without introducing 
modulation. The equalizer used is an 11 tap equalizer and the 
channel is a telephone channel. 
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Fig.14 Convergence of CMA without Modulation 
   
 Figure 15, 16 and 17 shows an eye diagram representation 
of Information signal, Signal with added ISI and noise, and of 
Data equalized using CMA algorithm. As can be seen from fig 
18, the eye diagram of an equalized data is widely opened 
indicating fairly good equalization. 
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 Fig.15 
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Fig.16 
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Fig. 17 
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Fig. 18 
 
Fig. 18 shows convergence of CMA with modulation. The 
modulation scheme used is 8-PSK with a constellation as 
shown in fig 19. 
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Fig.19 

 
 

V.  CONCLUSION 
 

Thus using Matlab simulations, various performance 
parameters of the standard LMS and Normalized LMS as well 
as comparison of performance of the standard LMS, Block 
LMS and Frequency Domain adaptive filter are verified using 
an 11 tap equalizer built around a transversal filter. 

It can be seen that the convergence characteristics of these 
algorithms highly depend on the step-size parameter µ . Thus 
selection of proper value of µ  is important as it affects the 
convergence rate and the cost function i.e. Mean Square Error. 
Also it is verified that NLMS gives improved convergence rate 
over the standard LMS, but with slight increase in complexity. 
Also it is verified that block LMS and FDAF has no much 
improvement over standard LMS, but they definitely reduce the 
complexity problem in case of filters with long impulse 
responses. These techniques reduce the complexity because the 
filter output and the adaptive weights are computed only after a 
large block of data has been accumulated. Also due to advanced 
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techniques like FFT in signal processing, the algorithms can 
efficiently perform the filter convolution and gradient 
correlation. 

Godard’s algorithm is a simplest of all blind equalization 
algorithms. It requires no much computing power than the 
conventional gradient algorithms, which makes its 
implementation easy and thus attractive in microprocessor 
based data receivers. The cost function used in CMA is a non-
convex function which represents ISI independent of carrier 
phase. Thus equalizer convergence does not require carrier 
recovery and it can be carried out at the equalizer output in 
decision directed mode. 

As equalization plays important role in wired as well as 
wireless world, it is needed to find optimum performance 
algorithms for adaptive filters. The work above can be used as a 
ground to find the optimum performance algorithm among 
many available. 
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