

Abstract-- Intrusion detection system (IDS) has been

introduced and broadly applied to prevent unauthorized access to
system resource and data for several years. However, many
problems are still not well resolved in most of IDS, such as
detection evasion, intrusion containment. In order to resolve these
problems, we propose a novel flexible architecture Vnida which is
based on virtual machine monitor (VMM) and has no-intrusive
behavior to target system after studying popular IDS
architectures. In this architecture, a separate intrusion detection
domain (IDD) is added to provide intrusion detection services for
all virtual machines. Specially, an IDD helper is introduced to
take response to the intrusions according to the security policies.
Moreover, event sensors and IDS stub, as the core components of
IDS, are separately isolated from target systems, so strong
reliability is also achieved in this architecture. To show the
feasibility of the Vnida, we implement a prototype based on the
proposed architecture. Based on the prototype, we employed
some rootkits to evaluate our Vnida, and the results shows that
Vnida has the ability to detect them efficiently, even some
potential intrusions. In addition, system performance study also
shows that Vnida only introduce less than 1.25% extra overhead.

Index Terms— Intrusion Detection, IDS,VMM, Virtualization,
Xen, Security.

I. INTRODUCTION

THE pioneering work of intrusion detection models is

proposed by Anderson [1] and Denning [2] in the 1980s. In
their papers, they provide a general intrusion detection
framework and establish the theoretical foundation for
intrusion detection system (IDS), and they also present formal
definitions of IDS. According to their definition, as an expert
system, IDS is able to infer from event logs occurring on a
system that has been or is being compromised. Currently, since
computer systems become more and more complex, there are a

This work was supported by the National Natural Science Foundation of
China under Grant No.60573042, No.60673071, No.60373087; the Beijing
Natural Science Foundation under Grant No.4052016, the National Grand
Fundamental Research 973 Program of China under Grant No.G1999035802
and National 863 High-Tech Research and Development Program under
GrantNo.2006AA01Z442.

1.School of Computer, Wuhan University, Wuhan, China, 430079,
2.Department of Computer Science, Tsinghua University, China 100084
3.Institute of Software, Chinese Academy of Sciences, China100080
4.State Key lab of Software Engineering, Wuhan, China, 430072
Email: xiantao.zhang@gmail.com
Phone: +86-21-61167779

variety of places where intrusion detection is possible. For
example, the analysis of network traffic may indicate an attack
in progress, a compromised daemon may be detected by its
abnormal behavior, and subsequent attacks may be prevented
by backdoor detection [19] and stepping stones [20].
Generally, there are two types of intrusion detection systems,
network-based intrusion detection system (NIDS) and host-
based intrusion system (HIDS). NIDS is implemented and
applied at any place of the whole network and has much
resistance to attacks, since it is separated with target system.
Under such condition, they are not affected and compromised
by security vulnerabilities on monitored target systems.
However, this architecture still has some important
shortcomings stemming from its intrinsic design, such as poor
view of events occurring inside the target systems, limited data
for intrusion analysis, disability to detect local root attacks.
Oppositely, Host-based architecture is deployed as a monitor
in target system, to collect data and use them to identify
potential intrusions. HIDS is enabled to gain good view of
what is happening in target system where it is deployed.
However, several problems might occur due to the easy access
to attack. First of all, Garfinkel [3] describes the difficulties
encountered by security tools that depend on system call
interposition when a HIDS monitors the target system. This
implementation technique may introduce new potential
vulnerabilities and enable some potential attacks.
In order to address these problems emerging from Host-based
and Network-based architectures, we proposed a VMM-based
[8], [11], [12] non-intrusive architecture called Vnida in this
paper. Our Vnida architecture not only offers a flexible and
easy way to detect, and even make active response to attacks,
but also has some outstanding features such as good visibility,
strong reliability and isolation, high efficiency and no intrusion
to target system that can not be achieved in traditional IDS
architecture. Furthermore, many existing intrusion detection
solutions can be easily integrated into Vnida. To show the
feasibility of Vnida, we implemented a Vnida prototype and
the evaluation result shows that Vnida can detect the intrusions
effectively. Meantime, the performance study demonstrates
that Vnida only introduces less than 1.25% extra overhead.
The remainder of the paper is structured as follows. In Section
2, we illustrate the new architecture and explain the
mechanisms of its main components. Section 3 lists the
advantages which are presented by our Vnida.

Vnida: Building an IDS Architecture Using
VMM-based Non-intrusive Approach

Xiantao Zhang1, Qi Li2,3, Sihan Qing3, Huanguo Zhang1,4

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 20

Fig.1. Overview of Vnida in Xen Environment

During the discussion, the limitations existing in Host-based
and Network-based architectures are addressed respectively. In
Section 4, we first present one implementation for Vnida, and
then the performance impact of our Vnida is evaluated through
the prototype system we developed. Section 5 discusses the
related work. Finally, Section 6 concludes the paper

II. VNIDA ARCHITECTURE

In order to fully understand VMM-based Non-intrusive
Intrusion Detection Architecture (Vnida), we implement a
proof-of-concept IDS based on Vnida using Xen VMM [12,
16]. The illustration of the entire architecture and the
presentation of its main components are made in Fig.1
according to Xen VMM architecture.

As Fig.1 illustrated, the Vnida is composed of 5
components VMM, IDD, Event Sensor (ES), IDS Stub (IS)
and IDD Helper (IH). In order to better understand the work
flow of the Vnida architecture, we will describe each
component in details in this section.

A. VMM
In recent years, with the advancement of virtualization, the

concept of VMM is becoming more and more popular. In the
field of security research, VMM is also involved in many
research projects [4], [14], [17], and plays an important role
with its benefits such as isolation, flexibility, and efficiency.
As for its definition, a virtual machine monitor [7], [9], [12] is
a thin software layer for a computer system that creates
efficient, isolated virtual machine environments that are
identical to underneath real hardware machine. Thus, a
physical machine can be converted to a set of virtual machines
and different virtual machines load different copies of
operating system, and each copy is totally isolated from the
others. Since VMM runs at the most privileged ring and owns
entire real machine, it is capable of inspecting arbitrary
behavior of virtual machine.

In our Vnida, as the basis of the entire architecture, VMM
is responsible for managing virtual machines, providing a
communication channel for virtual machines. In addition, it is

also the container of event sensors and IDD helper.

B. Event Sensor
As shown in Fig.1, Event Sensor is described as a separate

module in VMM, so it has same privileged properties with
VMM, such as controlling virtual machine, inspecting the
memory of virtual machine. Typically, it is implemented as a
set of sensors that are designed to monitor the states of target
system. For instance, a system call sensor can be implemented
and deployed to acquire the sequence of system calls occurring
in target system. Here, we generally design different sensors to
collect various data for detecting intrusions or to acquire
information about attackers. Moreover, Event Sensor also
need expose some interfaces to communicate with other
components. In addition, since event sensor is entirely
implemented in VMM, our Vnida has no intrusive behaviors to
target system for collecting states of guest system, unlike Host-
based architecture that generally needs to implement hooks or
interceptor inside kernel of target system.

C. Intrusion Detection Domain (IDD)
In our Vnida, we use a dedicated virtual machine to

implement IDD. In the Xen environment, a para-virtualized
user domain [12] is used to achieve this goal. With an eye to
security, IDD should be implemented as a simple system with
short network support, minimal kernel and root file system.

In the IDD, IDS stub and well-defined IDD interfaces are
presented. The IDD interfaces works with VMM interfaces
together to provide specific communication channels between
VMM and IDD. In general, the interfaces have two
functionalities. The first one is that, when event sensor
acquires some data from target system and stores them into the
trace buffer, it needs to send a notification to IDD through
interfaces and let IDD fetch them from trace buffer for further
analysis. The notification mechanism relies on these well-
defined interfaces. The other one is that, if IDS stub wants to
adopt some prevention actions to control compromised system,
it may notify IDD helper in VMM to dominate the target
system through these interfaces.

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 21

D. IDS Stub
IDS stub, as the core component of intrusion detection

systems, is responsible for interpreting the data of target
system, logging intrusion report, reporting potential attacks,
and responding to the attacks. Since IDS stub is deployed in
the dedicated IDD, strong isolation is provided between it and
target systems. Furthermore another big advantage is the
response mechanism provided by it. Generally, if target
systems have been compromised, IDS can not adopt
preventive rules to control target system except for issuing
alarms. But it is possible to carry out prevention policies to
control the compromised target system through response
mechanism in virtual machine environment. For example, IDS
stub can pause or reboot target system to prevent the attacks
once the system is compromised. Besides, flexible policies can
be developed to provide fine-grained intrusion detections in
IDS stub.

E. IDD helper
As to IDD helper, it is deployed in VMM as a separate

module. Its responsibility is to help IDS stub to complete
prevention actions. When IDS stub detects potential attacks,
system administrators often hope that the helper will adopt
some prevention actions to avoid leaking data or resource from
the security viewpoint automatically. In this case, IDS has the
ability to freeze or reboot the compromised target system with
the help of IDD helper according to relevant policies.

To sum up, these components described above need work
together with the entire virtual machine environment. In the
Xen environment, the other components of Xen infrastructure,
such as the domain0, HVM domain and User domain1, are
used to build the holistic architecture.

III. D ISCUSSION

As described in Section 1, it is very hard to conquer or
mitigate the disadvantages in traditional IDS architectures,
because these shortcomings stem from inherent function limits
of architectures. Our Vnida architecture not only resolves the
problems in traditional IDSes, but also provides many
attractive features which can not be achieved in previous
architectures.
 Good visibility. Network-based architecture has generally

limited functions because of its poor view of target
systems. Vnida is based on virtual machine monitor, and
VMM has the ability to access whole real machine
system, including CPU, memory, I/O devices etc.
Therefore, it is easy to inspect the arbitrary states of the
monitored target system which is run in guest virtual
machine. In addition, the platform hosting virtual
machine is entirely virtualized and managed by VMM, so
all states of target virtual machine can be acquired by
VMM at any moments. Thus, Vnida has a good view of
what is happening in target system.

 Strong reliability and isolation. Because Host-based

1 HVM domain and User doman are the Xen terms, and are used to
differential two virtualziation approaches.

architecture is based on host system, it often suffers the
reliability and isolation issues. As the basis in Vnida,
VMM has higher assurance to protect components in
different systems, because it is just a relatively simple
kernel with limited functionality and a narrowly well-
defined interface to the software run on it. Unlike
traditional operating systems, which must support file
system, network protocol stacks, etc., a VMM only need
present relatively simple abstractions, such as a virtual
CPU and memory. Thus, strong reliability of Vnida is
achieved due to the reliable basis provided by VMM. In
addition, Vnida clearly isolate target system from
intrusion detection system which is implemented in a
separated virtual machine system, and target system can
not access or control the IDS components in any way.

 High efficiency. Traditional Host-based architecture
generally undergoes large performance decrease because
it adds many extra mechanisms to trace system states.
Although Vnida needs some additional efforts to
implement the virtual machine environment, but
experience with virtual machine monitors over the past
30 years shows the overhead introduced by virtualization
is negligible [6]. Moreover, the dedicated monitor
mechanism of event sensor in VMM is more efficient
than complex purposeless trace approach, and the total
overhead introduced by Vnida is much less than Host-
based IDS architecture.

 No intrusion to target system. In Host-based architecture,
in order to acquire more information from system,
intrusion detection system relies on inserting modules
into OS kernel, but this will damage the integrity of target
system. In the Vnida side, it utilizes VMM to monitor
target systems and acquire the states of target system and
VMM has the ability to access any resource of real and
virtual system, so it is not necessary to add portions to
target system. From the viewpoint of system integrity,
non-intrusive implementation in Vnida makes more sense
than that in Host-based architecture.

Through above discussion, we can see that Vnida benefits
more than Host-based architecture and Network-based
architecture.

IV. PROTOTYPE IMPLEMENTATION AND EVALUATION

In this section, we implemented a proof-of-concept system
of the proposed Vnida based on Xen/IA64 project. There are
three reasons for us to choose Xen VMM as the experiment
system: (1) Xen is a popular VMM, and has been developed
and applied to more and more areas in the real world.
Leveraging Xen to implement the Vnida is closer to
practicality, which a target system normally comes up against.
(2) Xen VMM provides enough visibility to virtual machines,
and is capable of monitoring all the status of virtual machines
through well-defined interfaces. For example, the extension
domain of Xen VMM, domain0, has the ability to access the
whole memory range of all virtual machines through a libxc
library provided by the Xen framework. (3) In addition, since
Xen is an open source virtual machine, it is very convenient
for us to implement all the components of Vnida, log system

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 22

events occurring in the monitored target VM system, and
dump the context information related to the corresponding
events.

A. Xen VMM
In our proof-of-concept system, Xen hypervisor is used as

VMM. Thus, we first briefly introduce the Xen project in this
section. Xen is an open source virtual machine monitor, and
initiated by Cambridge Computer lab, and targets for
supporting execution of multiple guest operating systems with
unprecedented levels of performance and resource isolation.
So far, Xen VMM supports many platforms, such as x86, IA64,
Power PC, Arm and so on. Xen also provides secure
partitioning between virtual machines. Xen supports one
privileged virtual machine, called domain 0, which has access
to a control interface provided by Xen. In addition, Xen also
supports some User domains, which have less privileged than
domain 0. In our prototype system, we directly use a user
domain to implement the intrusion detection domain for
analyzing intrusions, and deploying flexible policy engine. But
considering the fact that IDD require restricted security
requirement, we tailored a user domain kernel for
implementing IDD. The kernel of IDD only keeps the minimal
requirement for run, without network core architecture support,
and device drivers except VBD front-end driver, and so on.

B. Intercepting System calls
In this section, we will detail the implementation of event

sensor, as the core component of Vnida, and study how it
works to perform collection for system information in our
prototype system. Confessedly, through analyzing the
sequences of system call of a special process, possible
intrusions can be identified out. This approach has been
invited in and applied to a lot of research projects [3], [5], [13].
In our Vnida prototype, we leverage this technique for IDS
stub. Therefore, the major work of our implementation is to
intercept dynamic behaviors (the sequences of system call) of
processes in the guest virtual machines.

To better understand how we achieve the system call
sequence of processes without any intrusion to target system,
we have to firstly understand the details of system call
mechanism implemented in IA64 Linux OS. Here, we briefly
summarize it as follows:

(1) In IA64 Linux System, user application can leverage
two paths to request system calls. The first one is using the
break instruction which traps to break vector of system IVT
table with a special immediate value 0x100000, and then OS
can identify out the system calls according to its arguments
passed by user application. The second one approach is also
using a special instruction epc which is capable of promoting
system privilege level smoothly form ring 3 to rings 0 without
breaking in the pipeline of CPU. More specifically, this
instruction can be executed in ring 3, but the page including
this instruction must have special access rights for execution.
Therefore, user-level application or library should cooperate
with OS kernel to achieve this goal. In IA64 Linux system,

they are implemented through a gate page with a fixed address
for epc instruction.

(2) In Xen/IA64, considering the fact that HVM domains
are running in the guest mode, we can insert some callback
functions in special paths to get corresponding system states in
VMM. To intercept system calls of OS in HVM systems,
VMM can identify them by tracing break and epc instructions.

(3) Intuitively, we can maintain a single data structure for
each HVM domain in VMM to trace system call sequence.
Unfortunately, it is not feasible to modern OS kernels,
because the multitasking and SMP support are provided and
can run tasks simultaneously. Specially, in our Vnida
prototype system, multi HVM domains can run in the same
time. As such, we have to provide a mechanism to handle this
case. IA64 Linux OS use the kernel register 6 (kr6) to store
the pointer which specifies which process running on the
current processor. In our implementation, we use this
information provided by kr6 to identify system calls from
different processors.

To capture all system call events in all target systems,
Vnida leverages Xen domain ID (VM-id) to distinguish HVM
domains. Here, we propose a 5-Tuple (VM-id, Pid, P-name,
Syscall-Num, Args) to wrap all system calls information from
event sensor.
 VM Identity (VM-id): It is a unique identifier in Xen

VMM, and is used to identify different virtual machines
in Xen world. In Xen execution, Xen VMM is
responsible for allocating and de-allocating VM-id at
VM creation time. So, we can leverage it to mark
different virtual machines.

 Process ID (Pid): We use this field to differential
processes. In our Vnida, it can be achieved through the
task_struct pointer stored in kr6. More specifically, Linux
consolidates three different data structure (the basic task
struct, thread_info, and process kernel stack) into a 32K-
aligned storage area for each process, and stores the base
address in kr6. As described in Fig.2, in task_struct data
structure, one field called pid is marked as the processor
id. Therefore, Xen VMM can get pid information
through its interface copy_from_guest which use value
of kr6 as argument.

Fig 2. Task_struct data structure of process in IA64 Linux OS

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 23

0

20

40

60

80

100

120

vpr
gcc m

cf

cra
fty

pars
er

eon

per lb
mk

g ap

vorte
x

bzip
2

tw
olfR

ela
tiv

e
pe

rf
or

m
an

ce
to

N
at

iv
e

sy
st

em W ithout Sensor With Sensor

Fig.32: Overhead imposed by the runtime event sensor. All results are relative performance to native system in SPEC INT2000 benchmark results

2 In oder to compare the performance in different cases clearly, we assume that native system gains 100% of performance.

 Process name (P-name): It is used to generate the final
detection report. Process name is also gotten from
task_struct’s field (char comm[TASK_COMM_LEN]).
Similar to process identity, process name is also gotten
from the interface copy_from_guest.

 Syscall Number (Syscall-Num): System call number. In
Linux OS, system call number is used to identify system
calls, and defines all system call numbers in the head file
asm/unistd.h. In IA64 Linux OS, software call convention
uses scratch register r15 to encode system call number. In
the Vnida system, when event sensor detects possible
syscall execution through break and epc instruction
tracing, it can get the system call num by reading general
register r15.

 Arguments (Args): System call arguments. Since we just
care about the sequence of system call, we do not use
arguments to detect possible intrusion. But we need put
them as important audit log information stored in IDD
stub. System administrators can use collected information
to confirm detected intrusions. In Vnida, Xen VMM gets
these arguments from the register stack (r32, r33,
r34 … ..) through a well-defined interface get_rse_reg.

Event senor is used to collect all above information
organized as the 5-tuple, and send to the trace buffer through
pre-defined interfaces. Subsequently, IDD can fetch them from
the trace buffer and analyze the possible intrusions in time.

C. Evaluation
To evaluate the effectiveness and performance overhead of

our proposed architecture, we implemented a Vnida prototype
using Xen/IA64 [8], [16]. As described in Fig. 1, we use HVM
domains supported by Intel ® Virtualization Technology [15]
to run target systems, and one para-virtualized user domain to
host the IDD.

Firstly, we employed some rootkits, such as ARK, Adore
toolkits, and Knack [22], to test its effectiveness. The
experiment result demonstrates that it gets the similar
effectiveness with traditional sys-call tracing approach. In
addition, we also implement a kernel monitor sensor to scout
the modification of kernel sys-call table, and our Vnida also
efficiently detect the intrusions. Thus, our Vnida has enough
strong adaptability as implemented through different detection
approaches.

Secondly, according to the architecture of Vnida, the
system overhead stems mainly from event sensors for target
system, we deployed the micro benchmark SPEC CPU2000,
which is compute-intensive to show the performance impact in
two situations (with or without event sensor) in general
computation environment. The detailed performance data in
both situations is illustrated in Fig.3.

Under each situation, their performance data is compared
with that of native system using same configurations. As Fig.3
shows, the extra overheads introduced by the system call
sensor in Vnida basically range from 0.1% to 1.25% in every
test suite of SPEC INT2000 [21]. This performance decrease
mainly stems from the overhead of monitoring system call
sequence of target system and communication between target
system and IDD. It shows that the VNIIDA architecture has
little side impact for performance, and is acceptable for real
applications. Our experiment environment is described as
follows. Native system and HVM system are all hosted in a
Linux RHEL4U3 system and with Intel Tiger4 Platform,
configuring 1.6G processors X 4 and 20G main memory. In
addition, Cset12014 of Xen/IA64 source code [19] is used to
build the virtualization environment.

V. RELATED WORKS

There are a number of documented studies [4], [14], [17]
that investigate virtual machine monitor for security research.
Dunlap et al. conduct a study in ReVirt [4] which is based on a
virtual machine monitor and logs sufficient information to
replay exactly the execution in a virtual machine. This allows
fine-grained examination and leads to a better understanding
of security issues. Revirt are not used to detect potential
intrusions, but we can integrate its idea into Vnida to provide a
complete intrusion detection solution with fine-grained
examination. Garfinkel et al. describe Terra, a Trusted Virtual
Machine Monitor (TVMM) prototype [17], which focuses on
security, assurance, and attestation in relation to virtualization.
Thus, their work presents a trusted computing base (TCB)
model for virtual environment, and all researches based on
VMM may leverage it to enhance their security bases. In
addition, Garfinkel et al . also propose Livewire [14] which is
also a VMM-based IDS. Livewire has the similar architecture

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 24

with Vnida. The major difference between these two
architectures is that they adopt different approaches to
implement IDS stub (policy engine in Livewire). Vnida
leverages a dedicated virtual machine to build IDS stub, and
this virtual machine is generally implemented with strict
security policies to ensure its own security, while Livewire
provides its policy engine in the host system. From this point
of view, Vnida provides stronger isolation between target
system and IDS stub. In addition, Zhang et al. [18] also
examine the effectiveness of secure coprocessor-based
intrusion detection. In their study, IDS is directly run on a
coprocessor other than host system, and this architecture
provide many similar features with our architecture, such as
good visibility, isolation. Our Vnida achieves the same ability
through the virtual machine monitor.

VI. CONCLUSION

In this paper, we proposed a VMM-based intrusion
detection architecture called Vnida which is intended to
address the shortcoming of traditional IDS architectures.
Subsequently, we examine the components of Vnida, and
analyze benefits achieved in Vnida, such as good visibility,
strong reliability and isolation, high efficiency and no intrusion
to target system. In addition, in order to further evaluate the
performance impact to target system in Vnida, we implement a
prototype based on proposed Vnida and analyze the
performance in guest domain in Vnida, and the result shows
Vnida introduces less than 1.25% extra overhead in the
experiment of SPEC INT 2000 with highly efficient detection
through many rootkits test experiments.

Many aspects of the architecture can be extended in the
future. For example, we can leverage Trusted Computing
technology to build Trust VMM [17] and further secure the
key components in the architecture.

VII. ACKNOWLEDGMENT

The authors gratefully acknowledge members from Intel
Open-Source Technology Center. They provided us the
experiment platform, and gave us lots of technical assistances.
In addition, we also thank reviewers of our paper for their
valuable suggestions.

VIII. REFERENCES

[1] J.P Anderson. Computer Security Threat Monitoring and Surveillance.
Technical report, James P Anderson Co., Fort Washington,
Pennsylvania, April 1980.

[2] D.E Denning. An Intrusion Detection Model. IEEE Transactions on
Software Engineering, Number 2, page 222, February 1987.

[3] T.Garfinkel. Traps and pitfalls: Practical problems in system call
interposition based security tools. In Proceedings of the 10th Annual
Symposium on Network and Distributed System Security (NDSS 2003),
February 2003.

[4] G.W Dunlap, S. T King, S.Cinar, M.Basrai, and P. M Chen. Revirt.
Enabling intrusion analysis through virtual-machine logging and replay.
In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI 2002), December 2002.

[5] A P Kosoresow,SA Hofmeyr. Intrusion detection via system call traces.
IEEE Software ,1997 ,14 (5) :35 - 42.

[6] R..Howworth. Virtualservers pay off. ITWeek, March 2003.

[7] R. J.Creasy. TheoriginoftheVM/370 time-sharing system. IBM Journal
of Research and Development, 25(5), 1981.

[8] Xen Source Corp. Xen/IA64 project.
http://xenbits.xensource.com/ext/xen-ia64-unstable.hg

[9] A.Whitaker, M.Shaw, and S.D. Gribble., “Denali: Lightweight virtual
machines for distributed and networked applications,”Technical Report
02-02-01, 2002.

[10] B. Mukherjee, L T.Heberlein and K.N Levitt. Network Intrusion
Detection, IEEE Network, May/June 1994, pages 26-41

[11] P.A.Karger,M.E.Zurko,D.W.Bonin,A.H.Mason, and C. E. Kahn. A
Retrospectiveon the VAX VMM Security Kernel. IEEE.Transactions on
Software Engineering, 17(11):1147–1165, November 1991.

[12] P.Barham, B.Dragovic, K.Fraser, S. Hand, T.Harris, A. Ho,
R.Neugebauer, I. Pratt, and A.Warfield. Xen and the art of virtualization.
In Proceedings of the ACM Symposium on Operating Systems
Principles, October 2003

[13] Bry S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detect using
sequences of system calls. Journal of Computer Security, 6:151–180,
1998.

[14] T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the 2003
Network and Distributed System Security Symposium (NDSS), February
2003.4.

[15] Intel® Corp, “Intel® Virtualization Specification for the Intel® Itanium®
Architecture (VT-i)”. http://www.intel.com/technology/virtualization

[16] Y. Dong, S. Li, A. Mallick; J. Nakajima, K. Tian, X. Xu, F. Yang, W.
Yu, "Extending Xen* with Intel® Virtualization Technology." Intel
Technology Journal. Oct 2006.

[17] T.Garfinkel, B. Pfaff, J.Chow, M. Rosenblum, and D. Boneh. Terra: A
Virtual Machine-Based Platform for Trusted Computing. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, USA, October 2003.

[18] X.Zhang, L.v Doorn, T. Jaeger, R. Perez, R.Sailer. Secure coprocessor-
based intrusion detection. In Proceedings of the ACM SIGOPS
European Workshop, September 2002.

[19] Y. Zhang and V. Paxson. Detecting backdoors. In Proceedings of 9th
USENIX Security Symposium, August 2000.

[20] Y. Zhang and V. Paxson. Detecting stepping stones. In Proceedings of
9th USENIX Security Symposium, August 2000.

[21] Standard Performance Evaluation Corporation http://www.spec.org
[22] http://www.antiserver.it/backdoor-rootkit.

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 25

http://xenbits.xensource.com/ext/xen-ia64-unstable.hg
http://www.intel.com/technology/virtualization

