
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract: A Data Warehouse stores integrated information
as materialized views over data from one or more remote
sources. These materialized views must be maintained in
response to actual relation updates in the remote sources. The
data warehouse view maintenance techniques are classified into
four major categories: self-maintainable recomputation, not
self-maintainable recomputation, self-maintainable incremental
maintenance, and not self-maintainable incremental
maintenance. This paper provides a comprehensive comparison
of the techniques in these four categories in terms of the data
warehouse space usage and number of rows accessed in order to
propagate an update from a remote data source to a target
materialized view in the data warehouse.

Index Terms: VM, DWH, RVM, IVM, OLTP, ECA.

I. INTRODUCTION
A DWH stores integrated information over data

from one or more remote data sources for query and analysis
[11]. The integrated information at the data warehouse is
stored as materialized views. A materialized view is the
result relation of the evaluation of the relational algebra
expression that defines the view relation [3]. Using these
materialized views, user queries can be answered quickly as
the information may be directly available or can be
calculated.

A problem known as the view maintenance problem
is how to maintain the materialized views so that they can be
kept up to date in response to updates of the actual relations
in the remote data sources. . The database systems
understand view management and view definitions and know
what data is needed for propagating updates to the views.

In a data warehouse, the query expressions that
define views and actual relations may be stored at many sites.
The sources may inform the data warehouse when an update
occurs but they might not be able to determine what data is
needed for updating the views at the data warehouse.
Therefore they may send only the actual data updates or the
entire updated relations to the data warehouse [16]. Upon
receiving this information, the data warehouse may find that
it needs some additional source data in order to update the
views. Then it will issue some queries to some of

"This work was supported by DSI under encouraging Research Activities
Performance Analysis of View Maintenance Techniques for DW

Prakasha S is with Dept of Computer Science, Dayananda Sagar College of
Engineering since 2007 july Shavige Malleshwara Hills, Kumara Swamy
Layout Bangalore , Karnataka, India
e mail: sprakashjpg@yahoo.co.in
R.Selvarani is with Dept of Computer Science, Dayananda Sagar College of
Engineering since 2007 july Shavige Malleshwara Hills, Kumara Swamy
Layout Bangalore , Karnataka, India
E Mail:- selvss@yahoo.co.in.

the sources to request the additional source data. Some of the
sources may have updated their data again before they
evaluate the requesting queries from the data warehouse.
Therefore they will send incorrect additional data to the data
warehouse, which subsequently will use the incorrect data to
compute the views. This phenomenon is called distributed
view maintenance anomaly[17]. Solving the view
maintenance problem in data warehouses is thus more
complicated than that in traditional database systems. The
objectives of this paper are to provide a classification of
different view maintenance techniques that have been
proposed and to conduct a comprehensive comparison of
these techniques in terms of space usage and number of rows
accessed using the TPC benchmark for decision support
queries.

II. CLASSIFICATION OF DWH VM TECHNIQUES
The existing DWH VM techniques can be classified

into two broad categories: RVM and IVM. Depending on
whether the data warehouse has to query the remote data
sources in order to calculate the new views, the techniques
can be further classified as self-maintainable or not self-
maintainable. The below subsections discuss these four
categories.

A. The Self-Maintainable Recomputation Category

Materialized views can be computed by using the
view definitions and other materialized views at the data
warehouse. The current materialized views being maintained
have no contribution to the calculation of the new views.
Some techniques replicate all or part of the remote data at the
data warehouse. We can view these replicated data as some
kind of materialized views at the data warehouse. Others
such as the self-maintenance warehouse approach discussed
in [18] store the remote relations at the data warehouse as
additional materialized views to provide data needed when
the data warehouse computes the new views. Therefore, the
data warehouse will never have to query the data sources for
additional data.

A self-maintainable materialized V view can be
defined in two ways. In first case, the view V is defined as

where all vi 's are self-maintainable materialized views
stored in the data warehouse[10]

However, a self-maintainable data warehouse view
cannot be defined as

Performance Analysis of View Maintenance
Techniques for DW

 1Prakasha S. and 2R. Selvarani

 Vol. 4, 26

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

where all relations vi 's are self-maintainable
materialized views residing at the data warehouse, all
relations ri 's are self-maintainable relations residing at the
remote data sources, and there are totally N relations in the
definition of view V. The reason is as follows. The data
warehouse is still self-maintainable when an update of
relation rl is propagated to the data warehouse as all vi 's are
available in the data warehouse. However, when an update of
view vi is propagated to view V, the relation rl is not
available at the data warehouse. Therefore, the data
warehouse has to send a query to the remote data sources to
get the relation rl in order to calculate view V. Thus view V
is not self-maintainable[12].

An advantage of the techniques in this category is

that the view maintenance anomaly problem is avoided as all
necessary data are available at the data warehouse. The data
warehouse knows the view definitions and what to do with
the views to keep them up to date. It eliminates accesses to
the remote relations, and therefore, it does not compete with
the remote data sources' local resources. Extra storage and
time are thus needed to maintain these additional views.

B. The Not Self-Maintainable Recompilation Category

When an update occurs at the data source or
periodically, the source will inform the data warehouse.
According to the query expression that defines the view, the
data warehouse may get part of data it wants from other
materialized views at the data warehouse, and issue queries
to the sources to get the other data it does not have. The
sources send the query results back to the data warehouse.
Based on the query results, the data warehouse calculates the
views and stores the results as materialized views in the data
warehouse.

The DWH may replicate part of the remote
relations in the warehouse. However, these data are not
enough for maintaining the materialized views. Therefore,
the data warehouse will have to query the remote data
sources for additional data in order to maintain the views. An
extreme case is where the data warehouse does not replicate
any remote relations.

If the view maintenance process is not designed
carefully, the distributed view maintenance anomaly problem
will occur. Suppose that there is a data warehouse system
where the remote data sources send updated relations to the
data warehouse whenever an update occurs at the data
sources [14]. Upon receiving the information, the data
warehouse is ready to compute the new views. But now let
us assume that the data warehouse finds that it needs some
other relations at some remote data sources to compute the
new views. It will issue queries to these data sources [15].
Suppose the data sources that sent the updated relations to
the data warehouse update the relations again before they
receive the queries from the data warehouse. The data
sources answer the query and send the results to the data
warehouse. These results might contain extra information
that is incorrect. The data warehouse will then use the
incorrect data to compute the new views, which will result in
incorrect new views.

C. The Self-Maintainable Incremental Maintenance Category
In this category, the DWH views are maintained by

using the view definitions, the materialized views, and the
view updates. The DWH will never query the remote data
sources as the information at the data warehouse is enough
for maintaining the views. The data warehouse computes the
view updates, then adds them to the materialized views. The
process is incremental. Normally, only necessary remote
relations, or views of the remote relations are stored at the
data warehouse as materialized views. In the extreme case,
all remote relations can be replicated at the data warehouse.
The self-maintainable warehouse approaches discussed in
[4] , [2] and [10] belong to this category.

Let us discuss how to maintain a view V that is

defined as
where

each vi is a materialized view and is defined as either

where each v1j is a view defined by other auxiliary

materialized views,
Finally, at the lowest level of the view hierarchy

discussed earlier in this paper, view vMj can only be defined
by relations at the remote data sources as follows:

The above view V is thus defined by M levels of the

materialized views in the view hierarchy. In the second case,
the view can only be defined by base relations r1j.

All intermediate materialized views can be viewed
as auxiliary views. These auxiliary views are self-
maintainable. The materialized view V is self-maintainable
by using the update information and additional information
from the auxiliary views. The data warehouse views,
including views such as V and auxiliary views, can be
maintained starting with those views that do not depend on
any other auxiliary views, working up to the final original
view V.

figure 1: View Hierarchy Example.

All related materialized primary views, auxiliary
views and base relations can be drawn in a hierarchy
structure as shown in Figure 1. All leaves in the hierarchy
structure are those materialized views defined by the base
relations. In this example, V is the primary materialized

 Vol. 4, 27

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

view. Views v1, v2 and v12 are materialized auxiliary views
defined by other materialized auxiliary views. Views v3, v11,
v13, v14, v23 and v24 are materialized auxiliary views
defined by the base relations. All relations rij 's are the base
relations. The views in the leaves should be maintained first.
Suppose an update for r33 occurs in the data source. View
v24 should be maintained first. Then views v12 and view v1
must be maintained next in that order. Finally, the primary
view V is maintained.

The data warehouse never needs to query the remote
data source to get additional data. The data warehouse
maintenance operations can be totally separated from other
OLTP operations[8]. Whether the remote data source is
available or not will not affect the data warehouse view
maintenance process. However, in order to make the
materialized views self-maintainable, the auxiliary views are
stored in the data warehouse to provide the additional
information. Extra storage and time overhead are therefore
required to maintain the auxiliary views themselves. [10].

A. The Not Self-Maintainable Incremental Maintenance
Category

The DWH has to query the remote data sources
whenever necessary because the information at the data
warehouse is not enough to maintain the view. A number of
existing approaches fall under this category. Among them
are the unrestricted base access [14] and runtime warehouse
self-maintenance [5]

a) Unrestricted Base Access

In the Unrestricted Base Access approach [14], the
data warehouse accesses the actual relations from the data
sources whenever necessary in order to maintain the
materialized views. There are many proposed algorithms that
follow this approach. The Eager Compensating Algorithm
(ECA) is the simplest among them. It is also the fastest
algorithm that will let the data warehouse remain in a
consistent state [14]

The data warehouse keeps a temporary table called
COLLECT to keep the intermediate answers it receives from
the data sources. It also keeps a set called Unanswered Query
Set It then creates a temporary COLLECT table and UQS set
for processing this specific query, and sets both the
COLLECT table and UQS to empty.

The data warehouse writes the query Qi to the UQS
and sends the query Qi to the data source. Suppose there is
another update Uj that occurs at the same data source. The
data source sends the update Uj to the data warehouse before
it receives the query Qi. The data warehouse now receives
the update Uj. It knows that the upcoming answer for Qi
from the data source will contain extra information caused by
simultaneous Uj update at the data source[15].

This approach calculates view updates then adds
them to the old views in order to get the new views.
However, the data warehouse has to access N –1 remote
source actual relations in order to propagate one source
update.

In this approach, the data warehouse may have to
send queries back to the sources and waits for answers in

order to compute the view updates. Therefore, this approach
has the same limitation as the not self-maintainable
recomputation approach. Computing these queries consumes
remote sources’ local resources, and will slow down other
OLTP operations. If the remote sources are unavailable, the
data warehouse will not get the answers it needs.

c) Runtime Warehouse Self-Maintenance

Design-time self-maintainability is not flexible. It
may be difficult or impossible for us to know the exact
contents of the views and their updates at design time. To
solve this problem, a run time warehouse maintenance
approach has been introduced [5].

The basic idea of the runtime self-maintenance
approach is that the data warehouse generates the self-
maintainable test for the views to determine whether the
views are self-maintainable for a particular update. At run
time, the self-maintainable test determines the views for self-
maintainability [1].

. If the view is not self-maintainable, then the data
warehouse has to query the remote data sources for those
relations it needs in order to update the view. In this case,
this approach is similar to the unrestricted base access
approach.

III. PERFORMANCE ANALYSIS

We conduct an analysis to compare the performance

of different algorithms in the four categories. We consider
only the problem of single view maintenance in a single
source environment because the ECA algorithm in the not
self-maintainable incremental maintenance category can only
be used in this environment [14].

A. Performance Measurements

In our analysis, only Select-Project-Join views are
considered. We measure the performances of the techniques
in terms of space and number of row accesses, which are
defined as follows:

• Space: total space needed to store the data in the
data warehouse, including space for auxiliary views.
We do not consider indices.

• Number of rows accessed: the number of rows that
must be accessed in the data warehouse and the data
sources in order to integrate the updates into the
data warehouse.

B. Comparison Based on Space Needed in the Data
Warehouse

a) Self-Maintainable Recomputation

The techniques in this category do not query the
remote data source for additional data in order to maintain
the data warehouse materialized views. The data warehouse
can replicate all or part of the remote base relations at the
data warehouse. These additional data take space at the data
warehouse. Here we consider the case where the materialized

 Vol. 4, 28

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

views are defined by other materialized views (auxiliary
views) at the data warehouse, and all auxiliary views are
replicated remote relations. A view V is defined as

b) Not Self-Maintainable Recomputation

Here we consider only the case where the data
warehouse does not replicate any base relations. Therefore,
the data warehouse always has to query the remote data
sources. The data warehouse stores only materialized views.
In this extreme situation, the amounts of space needed in the
best case, the average case and the worst case are the same,
and are equal to Card(V) ts(V).

b) Self-Maintainable Incremental Maintenance

Similar to the self-maintainable recomputation
techniques, the techniques in this category can replicate all or
part of the remote data at the data warehouse. Here we
consider only the case where the materialized views are
defined by other materialized views (auxiliary views) at the
data warehouse, and all auxiliary views are replicated remote
relations [6].

c) Not Self-Maintainable Incremental Maintenance

Here we consider the Eager Compensating
Algorithm (ECA) for this category. In ECA, a temporary
table COLLECT is used to store intermediate query answers.
For every update, the queries including compensated queries
are sent to the data source. Note that the COLLECT table is
empty only when there is no query to the data source, or the
answers for all the queries are returned to the data warehouse
before a new update occurs at the data source. This is the best
case[9].

C. Comparison Based on the Number of Rows Accessed

To analyze the number of rows accessed at the data
warehouse by the techniques, we made the following
assumptions:
• The set of a primary view and its auxiliary views (if any)

is independent to other sets of primary views and their
auxiliary views.

• We do not consider indices. Linear search is thus used
to check if a record satisfies a select or join condition.

• All auxiliary views are self-maintainable and are
replicated base relations.

• Updates to auxiliary views and primary views are for
appending only.

a) Self-Maintainable Recomputation

The data warehouse will never query the remote
data sources as all necessary data are available at the data
warehouse. Updates from the remote data sources have to be
propagated to the replicated relations at the data warehouse
first, then the data warehouse recalculates the view relation
and stores the result at the data warehouse as the new
materialized view. In order to propagate an update to data
warehouse replicated relation, the number of rows to be
accessed at the data warehouse is the cardinality of the

relation itself plus the cardinality of the update. That is,
Card(r) + Card(U).

b) Not Self-Maintainable Recomputation

Only source data is required to be accessed. The
reason is that the warehouse recalculates the full view using
the source data each time. It does not use the data warehouse
data. Suppose the system locks all base relations in order to
evaluate the query expression that defines the view. If the
nested-loop join method [3] is used to evaluate it, the total
number of rows to be accessed is Card(r)N.

Another strategy such as the one described in can
also be used to evaluate the query Q that defines the view
V[14]. It will reduce the total number of rows to be accessed.
Let us rename the actual relations according to the join order.

c) Self-Maintainable Incremental Maintenance

No queries are sent to the data sources for additional
information. Therefore, the number of rows accessed in the
data source is equal to 0. For N base relations in a view, Nav
should be less than or equal to N. In the worst case, Nav is
equal to N.

At first, the auxiliary view itself has to be
maintained before the primary materialized view can be
maintained. Let Card(U) stand for the cardinality of update
U. According to our assumption that auxiliary views are self-
maintainable and updates are used for appending only, the
number of rows needed to be accessed in order to maintain
the auxiliary view is Card(U) + Card(AV). Let Card(AV)
stand for the cardinality of the auxiliary view update, which
is the same as Card(U). Then the update is propagated to the
primary view[8]. We need to calculate the primary view
update.

d) Not Self-Maintainable Incremental Maintenance

In the ECA algorithm, all tuples in the view table
have to be accessed in order to find a tuple to integrate with
the view update. However, the data warehouse may have to
access data from remote sites except for the best case[11].
Parts of these queries are compensated. we derive the number
of wrapper queries corresponding to queries with N – n
relations in the multiple tuple update case .

 IV. CONCLUSIONS AND FUTURE WORK

All data warehouse view maintenance techniques
can be classified into four major categories. They are self-
maintainable recomputation, not self-maintainable
recomputation, self-maintainable incremental maintenance,
and not self-maintainable incremental maintenance. Their
advantages and disadvantages are l

Both self-maintainable recomputation and self
maintainable incremental maintenance approaches totally
separate the data warehouse view maintenance operations
from the OLTP operations. Therefore, the view maintenance
operations will not consume data sources’ local resources.
These operations only consume the data warehouse's
resources. Even if the remote data sources are not available,
the data warehouse view maintenance process can continue
running. However, a part or all source data are replicated at

 Vol. 4, 29

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

the data warehouse to make the data warehouse view
maintenance process self-maintainable. These replicated data
take space. Data transfer processes are implemented to
transfer data from the remote data sources to the data
warehouse. Design, implement and maintain these processes
are time-consuming. A lot of unnecessary data may be
duplicated at the data warehouse. However, these are the
approaches that probably many large companies have to take
if they want to separate their data warehouse view
maintenance operations from their OLTP operations.

TABLE I

ADVANTAGES AND DISADVANTAGES OF THE VM TECHNIQUES

Both the not self-maintainable recomputation and

not self-maintainable incremental maintenance approaches
suffer from some common disadvantages. As the remote data
sources have to process queries from the data warehouse that
consume their limited local resources, the OLTP system will
be slow. Once a data source is unavailable, the data source
will not be able to answer queries sent from the data
warehouse in time. It will block the data warehouse view
maintenance process. The not self-maintainable incremental
maintenance approach has some additional disadvantages. To
avoid the anomaly problem, the view maintenance process

must be designed carefully. If a lot of updates happen at the
data sources, the data warehouse may issue many
compensating queries. It is very possible that the data
warehouse may never get the final query results. Both
approaches also have some common advantages. As there is
no replicate data stored at the data warehouse, no data
transfer process has to be implemented and maintained.

There is no extra space for storing replicate data.
Both approaches are good for small to mid-sized companies
whose OLTP database systems are not too busy. Among all
the four categories, self-maintainable incremental
maintenance is the best in terms of space used in the data
warehouse and number of rows accessed in order to
propagate an update to the target materialized view in the
data warehouse[13] . As the cost of data storage becomes
increasingly low, this is the best approach to implement a
data warehouse.

V. REFERENCES

Periodicals

[1] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and

Y. Zhuge, “The Stanford Data Warehousing Project.”
IEEE Data Engineering Bulletin, June 1995.

[2] R. Hull and G. Zhou, “A framework for supporting data
integration using the materialized and virtual
approaches,” In SIGMOD 1996.

Text Books
 [3] A. Silberschatz, H. F. Korth and S. Sudarshan, Database

System Concepts, 3rd. Edition, McGraw-Hill, 1997.

Technical Report
[4] Y. Cui and J. Widom. "Storing Auxiliary Data for

Efficient View Maintenance and Lineage Tracing."
http://www-db.stanford.edu/pub/papers/auxview.ps
Techincal Report, Stanford University, 1999.

[5] N. Huyn, “Efficient Self-Maintenance of
MaterializedViews.”http://www.db.stanford.edu/pub/pap
ers/vsm-2-tr.ps. Technical Note, 1996.

[6] N. Huyn, “Exploiting Dependencies to Enhance View
Self-Maintainability.” http://www-
db.stanford.edu/pub/papers/fdvsm.ps. Technical Note,
1997.

[7] Y. Zhuge, “Whips Performance: Model and
Experiments.”http://www.db.stanford.edu/pub/papers/pe
rf-tech.ps. Technical Note, December, 1997.

 Papers from conference proceedings

[8] N. Huyn, “Efficient View Self-Maintenance.”

Proceedings of the ACM Workshop on Materialized
Views: Techniques and Applications, Montreal, Canada,
June 7, 1996.

[9] N. Huyn, “Multiple-View Self-Maintenance in Data
Warehousing Environments.” Proceedings of the 23rd
VLDB Conference, Athens, Greece, 1997.

 Vol. 4, 30

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

[10] W. Labio, D. Quass, and B. Adelberg, “Physical

Database Design for Data Warehousing.” Proceedings
of the International Conference on Data Engineering,
Binghamton, UK, April, 1997.

[11] D. Quass, A. Gupta, I. S. Mumick, and J. Widom,
“Making Views Self-Maintainable for Data
Warehousing.” Proceedings of the Conference on
Parallel and Distributed Information Systems, Miami
Beach, FL, December 1996.

[12] J. Widom, “Research Problems in Data Warehousing.”
Proceedings of the 4th International Conference on
Information and Knowledge Management (CIKM),
November 1995.

[13] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H.
Garcia-Molina, and J. Widom, “A System Prototype for
Warehouse View Maintenance.” Proceedings of the
ACM Workshop on Materialized Views: Techniques and
Applications, Montreal, Canada, June 7, 1996, pp. 26-
33.

[14] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom,
“View Maintenance in a Warehousing Environment.”
Proceedings of the ACM SIGMOD Conference, San
Jose, California, June 1995, pp 316-327.

[15] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener, “The
Strobe Algorithms for Multi-Source Warehouse
Consistency.” Proceedings of the Conference on Parallel
and Distributed Information Systems, Miami Beach, FL,
December 1996.

[16] Y. Zhuge, J. L. Wiener, and H. Garcia-Molina,
“Multiple View Consistency for Data Warehousing.”
Proceedings of the International Conference on Data
Engineering, Binghamton, UK, April, 1997.

 [17] Y. Zhuge and H. Garcia-Molina. “Performance
Analysis of WHIPS Incremental Maintenance.” Full
version of [Zhuge 98a] . September 1998.

Dissertations

 [18] N. Huyn, “Maintaining Data Warehouse Under Limited

Source Access.” Ph.D. Thesis, Stanford University,
August 1997.

VI. BIOGRAPHIES

R.Selva Rani born in Coimbatore she did
masters from manipal university and
pursuing Ph.D and JNT Hyderabad. Her area
of interest are Data Warehousing & Data
Mining, DBMS, Software Engineering.

 Prakasha S born in Bangalore 01-1-1972, he
did masters B.E from SJCE Mysore
university, and M.Tech from MSRIT, VTU
Belgaum, his area of interest are Data
Warehousing & Data Mining, DBMS,
Software Engineering.

 Vol. 4, 31

