
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

 Abstract- Real-time distributed database must maintain the
consistency requirement of objects and must service the arriving
request before the deadline. Users of mobile computers have
online access to real-time distributed database over wireless
networks. Because of limited bandwidth in wireless network, the
cost for message transfer is very expensive as compared to the
wire communication.

In this paper, we present a survey of different data replication
strategies and do a comparison with the model of dynamic
window mechanism (DWM) algorithm jointly implemented with
different types of object replacement policies. The survey shows
that how dynamic window mechanism minimizes the total cost
incurred for servicing of requests (both read and write).

Keywords- Dynamic window mechanism, allocation,
replacement strategies, communication costs

I. INTRODUCTION

ODAY users of mobile computers like palmtops,
notebook computers, Personal Digital Assistant (PDA)
have been widely increased. As the mobility is the main

characteristic of these computing machines, they have to rely
on online access to real-time distributed database via wireless
networks. The link bandwidth being limited, the cost of
servicing arriving request (read/write) is very high and needs
to be minimized.

The transactions in a real time distributed database system
(RTDDBS) are random read and write requests. Servicing an
object request may incur I/O costs, communication costs such
as control message transfer cost and data message transfer
cost. As a cost of servicing a request associated with a local
database is different from that associated with the remote
database, the system performance is very sensitive to the
distribution of the replicas among the nodes. In order to
guarantee the data consistency among multiple replicas, every
change to the object must be transferred to all the available
replicas in the system.

An allocation method determines whether or not the
allocation scheme changes over time. In a static allocation
method, the allocation scheme does not change over time,

Ms. Aditi Patankar Ramrao Adik Institute of Technology, Mumbai,Email:
aditi_marathe@rediffmail.com

Ms. Madhumita Chatterjee, Ramrao Adik Institute of Technology,
Mumbai,Email: c_a_mita@yahoo.com

whereas in a dynamic one it does. One copy and two copies
are the two possible static allocation schemes of the data item
x to a mobile computer. In the first scheme, only the
stationary computer has a copy of x, whereas, in the second
scheme, both the stationary and the mobile computer have a
copy of x.

In most of the works so far for data management [6],[7],
the available local database buffer to store the replicas of the
objects is assumed to be infinite. But in reality local database
capacity, at a processor is of finite size. Therefore, when a
processor’s local database buffer is full, while an allocation
and replication algorithm informs this processor of the need to
save the newly requested object, we face problems like:
Should the newly requested object be saved or not? When,
where and how it should be saved?

The authors in [2] discuss a network model which tells how
the objects are stored in the machines. Cost model is then
presented that considers all the communication cost of the
operations involved in servicing read-write requests which
includes Control-message transferring cost and Data-message
transferring cost [4].

Using this cost model an online algorithm called as Real-
Time Distributed Dynamic Window Mechanism Algorithm is
designed that can dynamically adjust object allocation
schemes based on arriving read-write requests. The key idea
behind the DWM algorithm is to decide the read request are
saving read request or non-saving read requests. In addition,
one needs to take into account the issue of buffer capacity
constraints at the nodes.

In this paper, we have done a comparative analysis of the
different data replication strategies i.e static allocation with
DWM without buffer constraints and with buffer constraints.

II. NETWORK MODEL
The Real-Time Distributed Database system that is

considered in [2], consists of n number of nodes, denoted as
a1, a2, an, which forms a message-passing network for
internodes communication. Each individual node consists of a
processor and its local memory. All the local memories are
private and are accessible by their respective processors only.
Requests with deadlines arrive at the node concurrently and
there is a concurrency -control mechanism to serialize them.

Two types of communication costs [4] when servicing
requests are: a Data-Message i.e. object transferred between

Object management for real time distributed
database system using window algorithm with

caching
Aditi Patankar and Madhumita Chatterjee

T

 Vol. 4, 37

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

the processors via the underlying network. A control-message
transfer is needed when a node want to read an object which is
not in its local memory. The notation Cc is to denote Control-
message transferring cost and Cd to denote a Data-message
transferring cost [1, 2].

Normally the size of a control-message is very short than a
data-message. So, one can write Cd >Cc. In the proposed
system, it is assumed that for every object o, an initial
allocation scheme IAo is given by a fixed processor set S (o).
The processors in S (o) are called servers. For different objects
initial allocation schemes may be different. It is assumed that
each processor in the system knows the server set of every
object in the network. Now suppose a request for object o has
arrived at the processor, then the Data processor for this object
o is a processor having this object in its local memory. The
other processors are called as non-data processors of object o
when servicing request.

Therefore, in this system, when a processor Pi wants to
read an object o, if Pi is a data processor, then object o is
directly retrieved from its local memory; otherwise, since Pi
knows server set S(0), Pi will send a read request to the
nearest server , say Pj, in S(o). This will incur Cc units of cost.
As a response, Pj will retrieve object o from its local memory
and this will incur Cd units of cost. Then in order to minimize
the total servicing cost of future requests, Pj may indicate Pi to
save object o in its local memory. Such requests are termed as
a saving-read request.

III. COST MODEL
A cost model is presented by Wujan and Huag in [1] which

is used in Real-Time Distributed Dynamic Window
Mechanism Algorithm to compute the cost of servicing read
or write request arriving at a processor Po.

A. Read request:
Consider servicing a read request Ro arriving at a processor

Pi with deadline d and let Ao be the initial allocation scheme
of this object o known by processor Pi. Then,
Cost (Ro (Pi (d)) =

 1…………………… if Pi ∈ Ao
 1+ Cc+ Cd………….. if Pi ∉ Ao & Ro (Pi (d)) is not a
 saving read (1)
 2+ Cc+ Cd………….. if Pi∉Ao & Ro (Pi (d)) is a saving
 read

 In equation (1), if Pi ∈ Ao, then Pi must be the processor
Po itself and object o is retrieved directly form its local
memory. But if Pi ∉ Ao, then Pi sends a read request to its
nearest server pj. As a response, Pj retrieves object o from its
local memory and sends it to Pi.

From the above cost model, it should be noted that the only
cost difference between saving read and non saving read
request is 1 due to the saving operation.

B. Write request:
Consider servicing a write request Wo from processor Po

for object o with deadline d. Then the cost of servicing this
request can be given by,

COSTRDDWM (Wo (Pi (d))) = |Ao/A’

o | Cc + (|A’
o|-1) Cd + |A’

o|

Where (Ao/A’
o) are the processors in Ao but not in A’

o. A
write request creates new version of an object. So, in order to
maintain consistency among the replicas of an object (if there
are any), the invalidate control messages have to be sent to all
the processors in (Ao/A’

o), since these copies of the object o
are considered to be obsolete. Thus, this is in the first term.
The next part (|A’

o|-1) Cd is the cost of transferring the new
copy of the allocation scheme A’

o except pi itself. The last
part accounts for the I/O cost when processors in A’

o save the
object into their respective local databases.

IV. DYNAMIC WINDOW MECHANISM
Concurrency control mechanism [8] is assumed in every

node to serialize the arriving request in such a way that it
outputs at most one request in ∂ time units, where ∂ = 1.

In order to service these requests on or before their
deadline periods, whenever a request is released from its
concurrency control mechanism, RDDWM is invoked to
service this request.

RDDWM consists of dynamic window mechanism. Here,
multiple request windows are generated in every processor,
one for each requested object. A request window for an object
o is denoted as Window (o). This request window is of FIFO
type and has size equal to n, where n is the total number of
requests made for an object o.

There are two counters, C1 and C2 for each Window (o).
C1 has initial value n and the value of C1 is decremented by
one per time unit until it reaches 0 at which window will be
deleted from that processor. C2 will keep track of deadline
period for requests in Window (o).

Here, it is assumed that a request sequence forms two
phases[1][2]: Phase 1 and Phase 2. Phase 1 consists of several
read requests only and Phase 2 consists of a write request
followed by several read requests.

In fig. (a), when C1=n1, a write request arrives at
Window(o), Thus, the previous three read requests in window
forms phase 1. A window is closed when write request arrives
at it and read requests are serviced. After servicing these read
requests, Window (o) will be deleted and W(P3:d4) is inserted
into new Window(o). In fig. (b), when C1=0, phase 2 is
formed, as there is a write request followed by read requests.
In fig. (c), since C1-0, phase 1 is formed. After servicing these
requests, window will be deleted from the system.

 Vol. 4, 38

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

 W(P3:d4) arrives

C1=n Fig.(a) C1=n1

 C1=n Fig. (b) C2=0

 C1=n C1=0
Fig.(c)

Finally, it may be noted that if the deadlines imposed by
the requests is short for the system to process then there might
be some requests which do not get serviced by the system i.e.
that they might be dropped by the system. In this case it has
been assumed that those requests will have to leave the system
and have to be resubmitted.

V. SERVICING OF PHASES

A. Type I:
Type I phase consists of all read requests.
The mathematical model to represent total number of read

and write requests is given as follows:
 ∆ = nr(1) -[∑nr(1,k)-np(1)].(Cc+Cd)
 k ε Na(1)/Np(1)

The term - ∑nr(1,k)
 k ε Na(1)/Np(1)
represents the total number of read requests issued by
processors which have the object in their respective local
databases, where Na(1)/Np(1)denotes the set of processors in
Na(1) but not in Np(1).
If all the first read requests issued by the processors in Np(1)
are considered as saving-read requests, then the cost of
servicing read requests in Type I sub schedule is less by ∆
than that when these requests are considered as non saving-
read requests. However, these saving-read requests will incur
additional I/O operations in np(1). Besides, a write request if it
exists, will incur at most np(1).Cc of additional control
message cost, which comes from the “invalidation” of the
redundant replicas existed in the system.
Therefore, if the DWM finds that ∆ > [np(1) + np(1).Cc],
each of the first requests issued by the processors in Np(1)
should be considered as a saving-read request. Otherwise, if ∆
<= [np(1) + np(1).Cc], then all the requests issued by the

processors in Np(1) should be considered as non saving-read
requests.

B. Type II:

Type II phase consists of write request followed by read
requests.
Here,
 ∆ = nr(1) -[∑nr(1,k)-np(1)].(Cc+Cd)
 k ε Na(1)/Np(1)

After the first write request is serviced, if each of the first
read requests issued by processors in Np(i) is considered as a
saving-read request, the service cost is less by ∆ than that
when those requests are considered as non saving- read
requests. However, these saving-read requests will incur at
most [np(i)+ np(i)].Cc amount of cost more than that when
these requests are not considered as saving-read requests.

Therefore, if the DWM finds that ∆> [np(i) + np(i).Cc],
then each of the first read requests issued by processors in

Np(i) should be considered as a saving-read request.
Otherwise, if ∆ <= [np(i) + np(i).Cc], all the read requests
will be considered as non saving-read requests.

In the above discussed scheme [2], the authors assume that
the available resources at the processing site of distributed
database system are always plentiful like the available local
database buffer to store the replicas of objects is assumed to
be infinite. But, practically local database capacity is of finite
size. So the mechanism would not be efficient in a real time
practical situations. Bhardwaj and Lin in [1] propose some
object replacement strategies to overcome the above
drawback, which we discuss in the following section.

VI. OBJECT REPLACEMENT STRATEGIES
A read request from a processor pi for an object o may be

served as a saving read request by the DWM algorithm. If the
local database of pi has no enough space, then a decision must
be made through a kind of replacement strategy, which
decides whether or not the new object should be saved, or
which object in use should be evicted from the local database
to make space for the new object.

Object Models

Model A(Homogenous Object Sizes): In this scenerio, all
objects in DDBS are of same size i.e, |Oi |=|Oj |, where |Oi | is
denoted as the size of an object i.

Model B(Heterogenous Object Sizes): In this scenerio, the
sizes of the objects are different i.e, |Oi | !=|Oj |. The object
replacement strategies are more complicated in this case, since
in order to make enough space for a new object, it is possible
that more than one object in local database may need to be
evicted by the replacement strategies.

Object Replacement Strategies

In their work Bhardwaj and Lin [1] propose three different
object replacement strategies for both the model A and model

 Vol. 4, 39

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

B. For model A, the following three object replacment
strategies are proposed:

Strategy 1: No Replacement (NR): There is no
replacement taking place when the free space of a processor is
not sufficient.

Strategy 2: Least Recently Used (LRU): This algorithm
capitalizes on the principle of temporal locality and evicts the
object used least in the recent past on the assumption that it
will not be referenced in the near future.

Strategy 3: Least Frequently Used (LFU): This algorithm
uses the history of references to predict the probability of the
future access.

Similarly for model B, three object replacment strategies
are as follows:

Strategy 1: No Replacement (NR HET) : As there is no
replacement taking place when the free space of the processor
is not sufficient, we note that NR HET=NR

Strategy 2: Hetrogeneous Object Sizes LRU(LRU HET):
This policy also exploits temporal locality of reference.
However, when evicting selected objects, LRU HET may
choose more than one object to evict because of the possibility
that the size of first chosen object from the resident may be
smaller than the new object to be saved.

Strategy 3: Hetrogenous Object Sizes LFU(LFU HET):
LFU HET is the extension of LFU, using the object popularity
history to predict the probability of a subsequent request.

Based on the survey, we have done a comparative analysis
and arrived at the following results tabulated below.

COST COMPARISON AGAINST DIFFERENT ALLOCATION SCHEMES

Competitiveness Static
method

DWM
without
buffer
constraints

DWM
with buffer
constraints

Stationary
environment

1+Cc+Cd 2+2.Cc 2+2.Cc

Cd-1>0 not
competitive

superior Superior

Mobile
environment

Not
competitive

1+Cc+Cd 2+3.Cc/Cd

Cd+Cc<0.5 superior Not superior Not
superior

With different
no of request

- High Low

With different
node capacity

- High Low

where Cc- control message cost
 Cd – data message cost

The comparison shown above reveals that the performance
of DWM algorithm with and without buffer constraints is

same when stationary environment is considered. However in
mobile environment, the DWM with buffer constraints give
maximum efficiency. The performance of DWM is not as
efficient as static allocation if the sum of data message and
control message cost is lower than 0.5, where the lower bound
competitive factor of DWM is 1.5.

VII. CONCLUSION AND FUTURE WORK
For servicing on-line requests arriving at a RTDDBS in the

mobile computing environment, Dynamic Window
Mechanism is capable of servicing requests with deadlines.
Taking local database storage limitations into consideration,
three strategies are proposed to cope with the situation when
local database buffer has no available space for a new object.
Then a comparison is done between static allocation methods
against DWM without buffer and with buffer constraints.

It may be noted that neither mobility of hosts nor failure of
nodes is considered. To consider mobility of hosts, some
efficient mechanism has to be designed to transfer the request
windows between servers and cost model should also be
modified to include this additional cost of transferring request
windows. The DWM algorithm can be enhanced to achieve
dynamic fragmentation in distributed databases.

New replacement strategies can be proposed based on the
importance of an object at a particular node.

VIII. REFERENCES
[1] Wujuan Lin and Bharadwaj Veeravalli “Practically Realizable Efficient

Data Allocation and Replication Strategies for. Distributed Databases
with Buffer Constraints”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 17, No. 9, September 2006

[2] Wujuan Lin and Bharadwaj Veeravalli “A Window-based Object
Allocation and Replication Algorithm for Real-Time Distributed
Database Systems in Mobile Computing Environment”, Member IEEE,
IEEE CS, Department of Electrical and Computer Engineering, 2004.

[3] Wujuan Lin and Bharadwaj Veeravalli “Object Management in
Distributed Database Systems for Stationary and Mobile Computing
Environments:”, Network Theory and Applications(NETA) Series, vol.
12, Kluwer Academic Publishers, USA, 2003.

[4] Andrew S. Tanenbaum and Maarten Van Steen, “Distributed Systems:
Principles and Paradigms”, Prentice Hall, 2002.

[5] George F.Coulouris, Jean Dollimore and Tim Kindberg, “Distributed
Systems: Concepts and Design”, Addison-Wesley, 2001.

[6] A. Prasad Sistla, O.Wolfson and Y.Huang, “Minimization of
Communication Cost Through Caching in Mobile Environments”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 9, No. 4, pp.378-
390, April 1998.

[7] O. Wolfson and Y. Huang, “Competitive Analysis of Caching in
Distributed Databases,” IEEE Trans. Parallel and Distributed Systems,
vol 9, no 4, pp. 391-409, Apr. 1998

[8] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data Replication
Algorithm”, ACM Trans. Database Systems, vol 22, no 2, pp. 255-314,
1997

 Vol. 4, 40

