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Abstract--An improvement of the Hill cipher is proposed in 

this paper. The drawback of the Hill cipher algorithm is that the 
inverse of the matrix used for encrypting the plaintext does not 
always exist. So, if the matrix is not invertible, the encrypted text 
cannot be decrypted. Moreover, Hill cipher can be easily broken 
with a known plaintext attack revealing weak security. The 
proposed variant of the Hill cipher that overcomes these 
disadvantages. To overcome the drawbacks, the proposed 
cryptosystem uses randomly generated self-invertible matrix as 
an encryption key for each block encryption. Moreover, this 
method eliminates the computational complexity involved in 
finding inverse of the matrix while decryption. 
 

Index Terms--cryptosystem, encryption, decryption, Hill 
Cipher, Self-invertible matrix. 

I.  INTRODUCTION 
ODAY, in the Information Age, as the Internet and other 
forms of electronic communication become more 
prevalent, electronic security is becoming increasingly 

important. Cryptography, the science of encryption, plays a 
central role in mobile phone communications, pay-TV, e-
commerce, sending private emails, transmitting financial 
information, security of ATM cards, computer passwords, 
electronic commerce and touches on many aspects of our 
daily lives [1]. Cryptography is the art or science 
encompassing the principles and methods of transforming an 
intelligible message (plaintext) into one that is unintelligible 
(ciphertext) and then retransforming that message back to its 
original form. In modern times, cryptography is considered to 
be a branch of both mathematics and computer science, and is 
affiliated closely with information theory, computer security, 
and engineering [2]. 

 Cryptography systems can be broadly classified into: 
symmetric and asymmetric. Symmetric cryptosystems use the 
same key (the secret key) to encrypt and decrypt a message, 
and asymmetric cryptosystems use one key (the public key) to 
encrypt a message and a different key (the private key) to 
decrypt it. Asymmetric cryptosystems are also called public 
key cryptosystems. Symmetric encryption is referred to as 
conventional encryption or single key encryption.  

Conventional encryption can be further divided into 
categories of classical techniques and modern techniques. The  
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hallmark of conventional encryption is that the cipher or key 
to the algorithm is shared, i.e., known by the parties involved 
in the secured communication. Substitution Cipher is one of 
the basic components of classical ciphers. A substitution 
cipher is a method of encryption by which units of plaintext 
are substituted with ciphertext according to a regular system; 
the units may be single letters (the most common), pairs of 
letters, triplets of letters, mixtures of the above, and so forth. 
The receiver deciphers the text by performing an inverse 
substitution [3]. The units of the plaintext are retained in the 
same sequence in the ciphertext, but the units themselves are 
altered. There are a number of different types of substitution 
cipher. If the cipher operates on single letters, it is termed a 
simple substitution cipher; a cipher that operates on larger 
groups of letters is termed polygraphic. A monoalphabetic 
cipher uses fixed substitution over the entire message, 
whereas a polyalphabetic cipher uses a number of 
substitutions at different times in the message— such as with 
homophones, where a unit from the plaintext is mapped to one 
of several possibilities in the ciphertext. Hill cipher is a type 
of monoalphabetic polygraphic substitution cipher. 

The Hill cipher algorithm is one of the symmetric key 
algorithms that have several advantages in data encryption 
such as disguising letter frequencies of the plaintext, its 
simplicity because of using matrix multiplication and 
inversion for enciphering and deciphering, its high speed, and 
high throughput [4]. But the drawback of this algorithm is that 
the inverse of the matrix used for encrypting the plaintext 
does not always exist. So, if the matrix is not invertible, the 
encrypted text cannot be decrypted. Moreover, Hill cipher can 
be easily broken with a known plaintext attack revealing weak 
security. This paper presents a variant of the Hill cipher that 
overcomes these disadvantages. In the proposed Cryptosystem 
the matrix used for the encryption is itself self-invertible. So, 
at the time of decryption, we need not to find inverse of the 
matrix. Hence, this cryptosystem eliminates the computational 
complexity involved in finding inverse of the matrix while 
decryption. To overcome the weak security of the Hill 
algorithm, the proposed technique generates the encryption 
key to form a different key for each block encryption.  

The paper is organized as follows. Following the 
introduction, the basic concept of Hill cipher is outlined in 
section II. Section III discusses about the modular arithmetic. 
In section IV, proposed cryptosystem is presented. Finally, 
section V describes the concluding remarks. 

 A Novel Cryptosystem Using Matrix 
Transformation 

Bibhudendra Acharya,   Member, IEEE,     S.  K. Patra,  Member, IEEE   and                         
G. Panda,   Senior Member, IEEE 

T 

                                                                                                                                                                 Vol. 4, 92



Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India          
 

II.  HILL CIPHER 
Hill ciphers are an application of linear algebra to 

cryptology. It was developed by the mathematician Lester 
Hill. The Hill cipher algorithm takes m   successive plaintext 
letters and substitutes m  ciphertext letters for them. The 
substitution is determined by m  linear equations in which 
each character is assigned a numerical 
value )25,....,1,0( === zba . Let m  be a positive integer, the 
idea is to take m  linear combinations of the m  alphabetic 
characters in one plaintext element and produce m  alphabetic 
characters in one ciphertext element. Then, a m × m  matrix 
A  is used as a key of the system such that A  is invertible 

modulo 26 [5]. Let ija be the entry of A . For the plaintext 

block )...,,,( 21 mxxxx =  (the numerical equivalents of m  
letters) and a key matrix A , the corresponding ciphertext 
block ),...,,( 21 myyyy = can be computed as 
 
Encryption: 
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The ciphertext is obtained from the plaintext by means of a 

linear transformation. 
 
Decryption: 

The reverse process, deciphering, is computed by 
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Since the block length is m , there are m26  different m  
letters blocks possible, each of them can be regarded as a 
letter in a m26 -letter alphabet. Hill’s method amounts to a 
monoalphabetic substitution on this alphabet [6]. 

III.  MODULAR ARITHMETIC 
The arithmetic operation presented here are addition, 

subtraction, unary operation, multiplication and division. 
Based on this the self invertible matrix for Hill cipher 
algorithm is generated. The congruence modulo operator has 
the following properties [7]: 

 
1. ( )banpba −≡ ifmod  

2. ( ) ( ) pbapbpa modmodmod ≡⇒=  

3. pabpba modmod ≡⇒≡  

4. pcapabpba modmodandmod ≡⇒≡≡  
 

Let [ ]app −= ,...,1,0Z  the set residues modulo p. If 

modular arithmetic is performed within this set pZ , the 
following equations present the arithmetic operations: 

 
1. Addition: 
( ) ( ) ( )[ ] ppbpapba modmodmodmod +=+  

2. Negation: 
)mod(mod pappa −=−  

3. Subtraction: 
( ) ( ) ( )[ ] ppbpapba modmodmodmod −=−  

4. Multiplication: 
( ) ( ) ( )[ ] ppbpapba modmodmodmod ∗=∗  

5. Division: 
( ) cpba =mod/  when ( ) pcba mod∗=  

 
The following Table I exhibits the properties of modular 
arithmetic. 

 
TABLE I 

PROPERTIES OF MODULAR ARITHMETIC 
 

Commutative Law: 
( ) ( )
( ) ( ) pxpx

pxpx
modmod

modmod
ωω

ωω
∗=∗
+=+  

Associative Law: 
( )[ ] ( )[ ] pyxpyx modmod ++=++ ωω  

Distribution Law: 
( )[ ] ( ){ } ( ){ }[ ] ppypxpyx modmodmodmod ∗∗∗=+∗ ωωω  

Identities: 
( )
( ) papa

papa
modmod1
modmod0

=∗
=+  

Inverses: 
For each ,pZx ∈ there exists y  such that 

( ) xypyx −==+ then0mod  
For each pZx ∈  there exists y  such that ( ) 1mod =∗ pyx  

IV.  PROPOSED CRYPTOSYSTEM 
As Hill cipher decryption requires inverse of the matrix, we 

suggest the use of self-invertible matrix generation method 
while encryption with the Hill Cipher. In the self-invertible 
matrix generation method, the matrix used for the encryption 
is itself self-invertible. So, in the proposed cryptosystem at the 
time of decryption, we need not to find inverse of the matrix 
Moreover in the proposed cryptosystem, algorithm generates 
the different key matrix for each block encryption instead of 
keeping the key matrix constant. This increases the secrecy of 
data. In order to generate different key matrix each time, the 
encryption algorithm randomly generates the seed number and 
from this key matrix is generated. A method of generating a 
random self-invertible even matrix is  
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The algorithm generates nn×  matrix where n  is even and 
utilized for generating a self-invertible matrix.  

 
Let s  be the seed for generating the random number, 
 t be the multiplier generating the random number, 

p  the modulus (necessarily to be a prime number), and 
k  a scalar constant. 

Form a random matrix of 1122
Ann

×  with elements as 
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Then form ( )111212 as AIkAA −=  
One can also take ( )11AIk +  that means 
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Example: For 66×  random matrix (modulo 13) 
s  = seed value = 5, t  = multiplier 7, k =3, then 
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The flowcharts for the encryption & decryption methods 

are represented in Fig. 1 & 2. 
 

 

 
Fig 1. Flow chart for Encryption 
 

                                                                                                                                                                 Vol. 4, 94



Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India          
 

 
Fig 2. Flow chart for Decryption 

V.  CONCLUSION 
This paper presents a symmetric cipher that is actually a 
variation of the Hill cipher. The proposed cryptosystem 
eliminates the drawback of using a random key matrix in Hill 
cipher algorithm for encryption, where we may not be able to 
decrypt the encrypted message, if the matrix is not invertible. 
As this cryptosystem uses a different key for each block 
encryption, thereby significantly increases its resistance to 
various attacks. This cryptosystem encompass less 
computational complexity, as inverse of the matrix is not 
required while decrypting in Hill Cipher. Also the proposed 
method for generating self-invertible matrix can also be used 
in other algorithms where matrix inversion is required. 
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