
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract-- Testing of software is a time-consuming activity

which requires a great deal of planning and resources. In
scenario-based testing, test scenarios are used for generating test
cases, test drivers etc. UML is widely used to describe analysis
and design specifications of software development. UML activity
diagrams describe the realization of the operation in design
phase and also support description of parallel activities and
synchronization aspects involved in different activities perfectly.
Therefore, test scenarios generated from activity diagrams will
achieve test adequacy criteria perfectly. Handling parallel
activities represented by fork-join pairs present in activity
diagrams is also very difficult. Our approach generates test
scenarios from UML activity diagrams, where the design is
reused to avoid the cost of test model creation. This approach
generates test scenarios from activity diagrams containing fork-
join pairs and also handles the complicacy of the fork-join pairs.
A prototype tool has been developed to support the approach.

Index Terms--Automated testing, Model-based testing,
Scenarios, Scenario-based testing, Software testing,
Synchronization, test scenarios, UML, UML-based testing, UML
activity diagram.

I. INTRODUCTION
OFTWARE testing plays a crucial role in assuring
software quality. One of the most important issues in the

software testing research is the generation of the test cases. As
the complexity and size of software grow, the time and effort
required to do sufficient testing grow. Manual testing is time-
consuming and error-prone. It is necessary to develop
automatic testing techniques.

Test cases are commonly designed based on program
source code. This makes test case generation difficult
especially for testing at cluster levels. Test case generation
from design documents has the added advantage of allowing
test cases to be available early in the software development
cycle, thereby making test planning more effective. Another
advantage of design-based testing is to test the compliance of
the implementation with the design documentation. Test
scenarios are used for generating test cases, test drivers etc.
Manual generation of test scenarios is time consuming and

P Nanda is with National Institute of Technology, Rourkela, 769008 .
India . (e-mail: n.pragyan@gmail.com).

Dr. D. P. Mohapatra is with National Institute of Technology, Rourkela,
769008 . India . (e-mail: durga@nitrkl.ac.in).

S. K. Swain is with Kalinga Institute of Industrial Technology,
Bhubaneswar, 751024 . India . (e-mail: SwainSantosh@yahoo.co.in).

laborious. Hence either automatic or semi-automatic
generation of test scenarios is often desired. Test scenarios
can be generated from the design models. UML is achieving a
great attention as the industrial de-facto standard for modeling
object-oriented software systems, in software testing. Along
with the advantages there are also challenges for generating
test cases from UML specification. UML provides a number
of diagrams to describe particular aspects of software artifacts.
These diagrams can be classified depending on whether they
are intended to describe structural or behavioral aspects of
systems. Activity diagrams also describe the sequence of
activities among the objects involved in the control flow
during implementation. It focuses on representing activities.
test scenarios generated from activity diagrams will achieve test
adequacy criteria perfectly

Scenario-based testing is a software testing activity that
uses scenario tests, or simply scenarios, which are based on a
hypothetical story to help a person think through a complex
problem or system. They can be as simple as a diagram for a
testing environment or they could be a description written in
prose. These tests are usually different from test cases in that
test cases are single steps and scenarios cover a number of
steps. Scenarios are also useful to connect to documented
software requirements, especially requirements modeled with
use cases. Within the Rational Unified Process, a scenario is
an instantiation of a use case (take a specific path through the
model, assigning specific values to each variable). More
complex tests are built up by designing a test that runs
through a series of use cases. Scenario testing works best for
complex transactions or events, for studying end-to-end
delivery of the benefits of the program, for exploring how the
program will work in the hands of an experienced user, and
for developing more persuasive variations of bugs found
using other approaches. Test suites and scenarios can be used
in concern for complete system testing.

UML Activity Diagrams are commonly used to model
business processes, basic control and data flow in software
systems and they require little technical expertise to develop
and understand. UML activity diagrams describe the
sequential or concurrent control flows of activities. They can
be used to model the dynamic aspects of a group of objects, or
the control flow of an operation. UML Activity Diagrams are
used to model the logic captured by a single use case. The set
of activity diagrams represents the overall behavior specified
for the application and is the basis for testing the different
functionalities and business rules described in the use cases
specification.

 P. Nanda, D. P. Mohapatra and S. K. Swain

Generation of Test Scenarios Using
Activity Diagram

S

 Vol. 4, 69

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

This type of diagram is ideal for our purposes because we
require a method to describe the test case flow. In the test
generation phase, an activity’s text will become a test step. As
is allowed in UML, activities can include or be refined by
other activity diagrams (i.e., enhance by refinement). In these
cases, the test generation will “flatten” the diagrams. The step
containing the activity text will be replaced with the steps
generated from the refined or included diagram.

UML activity diagrams describe the realization of the
operation in design phase perfectly. Activity diagrams also
describe the sequence of activities among the objects involved
in the control flow during implementation. It focuses on
representing activities. Activity diagrams support description
of parallel activities and synchronization aspects involved in
different activities.

The modeling elements consist of nodes and edges. The
model includes action states, activity states, decisions, swim
lanes, forks, joins, objects, signal senders and receivers. The
edges represent the occurring sequence of activities, objects
involving the activity, including control flows, message flows and
signal flows. Swim lanes enable the activity diagram to group
activities based on who is performing them. Swim lanes subdivide
activities based on the responsibilities of some components. An
activity is a state with an internal action and one or more outgoing
transitions which automatically follow the termination of the
internal activity. Activity states represent the performance of a
step within the workflow. Activity states and action states are
denoted with round cornered boxes. Transitions show what
activity state follows after another. This type of transition is
sometimes referred to as a completion transition, since it
differs from a transition in that it does not require an explicit
trigger event; it is triggered by the completion of the activity
the activity state represents. Transitions are represented by
arrows. Decisions are those for which a set of guard conditions
are defined. These guard conditions control which transition
of a set of alternative transitions that follows once the activity
has been completed. You may also use the decision icon to
show where the threads merge again. Decisions and guard
conditions allow you to show alternative threads in the
workflow of a business use case. Decisions are shown as
diamonds with one incoming arrow and multiple exit arrows each
labeled with a Boolean expression to be satisfied to choose the
branch. Synchronization bars, are used to show parallel sub
flows. Synchronization bars allow us to show concurrent
threads in the workflow of a business use case. These are also
known as fork and join pairs. Forks or joins are shown by
multiple arrows entering or leaving a synchronization bar.

Figure 1 shows a UML activity diagram for an operation of
withdrawing money from an ATM. In this diagram a0 and a9 are
the initial and final states respectively. The states a1 to a8 are the
activity states. The arrows t0 to t15 are the transitions showing the
flow between the activity states. Decisions are shown using
diamonds and synchronization bars are used to show the fork and
join pairs. In this example, we have considered a nested fork-join
pair. The swim lanes are represented as ATM and BANK. These
swim lanes show which activities are performed by whom.

Fig 1. Activity diagram for withdrawing money from ATM

II. GENERATING TEST SCENARIOS FROM ACTIVITY DIAGRAM
Our approach parses the activity diagram and generates the

test scenarios which satisfy the path coverage criteria. In order
to traverse all the executing paths present in the activity
diagram that satisfies the requirement specifications, the
activity diagram is transformed into flowcharts and then it is
traversed to achieve path coverage criteria. As activity
diagrams represent the implementation of an operation like the
flow chart of code implementation and an executing path is a
possible execution trace of a thread of a program, the
executing paths are derived directly from the activity
diagrams. We have considered path coverage in our approach,

 Vol. 4, 70

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

since it has the highest priority among all the coverage criteria
for testing. Our approach also handles the complicacy of
nested fork joins. Moreover, in our approach we have used a
priority criterion that checks whether the target activity state
of a transition is a fork or an activity state. If the target of the
transition is a fork, then the fork has higher priority over the
activity state. So it should be considered first and then only
the other path is considered.

As a result of this priority criterion the complicated nested
fork-join pair is handled properly in our approach. In the
following, we describe the steps required for test scenario
generation.

A. Steps for test scenario generation
Step 1: First we construct the activity diagram for the given
problem. Then in order to generate test scenarios from activity
diagram, our approach traverses the activity diagram using
depth first search (DFS) method.
Step 2: Then, to traverse the activity diagram from initial state
to final state, our approach visits all the current activity states
and the corresponding transitions released from the current
activity state.
Step 3: Next, a record of the trace of a run of the activity
diagram is maintained by recording the visiting trace of the
current activity states and transitions. The current activity state is
recorded using a stack and its number of occurrence (in the stack)
is recorded by setting a flag array.
Step 4: When the current state is not empty, one of the
possible transitions is fired and its occurrence is set in the flag
array and the transition is then deleted from the possible
transition lists.
Step 5: Then the transition and its corresponding guard
condition are pushed into the stack. The current activity state
is then incremented and set to point the next possible activity
state.
Step 6: Each loop present in the activity diagram is executed
at most once covering the corresponding activity states and
transitions. A loop is bypassed in the sequence if it is already
considered earlier. After entering a fork-join pair, our
approach checks whether the priority criterion is considered or
not. Then, the next current activity state is visited according to
this priority criterion.
Step 7: This process continues till the current activity state is
empty i.e. no more transitions are present. In other words, this
process is continued untill a full path is completed.
Step 8: The test scenario is then read out from the bottom of
the stack.
Step 9: Then our approach checks the activity diagram for the
last visited current activity state where an unvisited transition
is present and repeats the whole process from that current
activity state.
Step 10: The process continues until all the activity states and
the corresponding transitions present in the activity diagram
occur at least once in the set of test scenarios.

B. Result
By implementing the above steps, we have generated a set of
test scenarios for the problem represented in the activity
diagram shown in fig. 1.

One of the test scenarios is as follows:
TS: (a0) t0 (a1) t1 (a2) t2 [incorrect] t3 (a3) [resolved] t5 (a4) t6t7
[amount available] t8 (a5) t9 t11 t7 (a6) t11 t12 (a7) t13 (a9).
This result is shown in fig. 2.

Fig 2: Snapshot of TSGAD showing one of the scenarios

C. TSGAD: A prototype tool
To support the above proposed scheme, we have

developed a tool named Test Scenario Generator for Activity
Diagram (TSGAD), which generates test scenarios from
activity diagrams. The activity diagram can be developed
using any UML tool such as Rational Rose or Magic Draw
etc. We have used Rational Rose to construct the activity
diagram. Then it can be exported as a XMI file. The GUI was
developed using the swing component of Java. The GUI
screen along with a sample test scenario is shown in Fig. 2.
The UML model parser present in TSGAD is abided by the
XMI specification of OMG. It imports activity diagrams easily
and analyzes the Rational Rose MDL file with the help of
Rose Extensibility Interface. Next, the model parser extracts the
activity states and the corresponding transition information and
stores them in an intermediate data structure such as tree which
can be accessed later by the scheme for generating test scenarios.
The tool analyzes the semantics of the result of the model parser,
and derives test scenarios using the proposed scheme that satisfies
the path coverage criteria.

 Vol. 4, 71

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

III. RELATED WORKS
Canevet et al. [5] present a method of analyzing the newly
revised UML2.0 activity diagrams. Their analysis method
builds on a formal interpretation of these diagrams with
respect to the UML2.0 standard. Their analysis approach is
exercised on a substantial example of modeling a multiplayer
distributed role-playing game. Mingsong et al. [6] used UML
activity diagrams as design specifications, and present an
automatic test case generation approach. The approach first
randomly generates abundant test cases for a JAVA program
under testing. Then, by running the program with the
generated test cases, we can get the corresponding program
execution traces. Last, by comparing these traces with the
given activity diagram according to the specific coverage
criteria, we can get a reduced test case set which meets the test
adequacy criteria. The approach is also used to check the
consistency between the program execution traces and the
behavior of UML activity diagrams. Linzhang et al. [7]
proposed an approach to generate test cases directly from
UML activity diagram using gray-box method, where the
design is reused to avoid the cost of test model creation. In
this approach, test scenarios are directly derived from the
activity diagram modeling an operation. Then all the
information for test case generation, i.e. input/output sequence
and parameters, the constraint conditions and expected object
method sequence, is extracted from each test scenario. At last,
the possible values of all the input/output parameters could be
generated by applying category-partition method, and test
suite could be systematically generated to find the
inconsistency between the implementation and the design.
Chandler et al. [8] introduced an approach that will capture,
store and output usage scenarios derived automatically from
UML activity diagrams. In this paper they presented an
approach, dubbed AD2US, which automatically extracts USs
from ADs; thereby extending the time available for other
activities such as test-case generation or the verification of
consistency between ADs, use cases and usage scenarios.
They have defined UCs by textually describing them using a
template to ensure that all possible scenarios and usage
interactions are defined. As per our knowledge although lots
of works has already been done using activity diagram yet no
one has discussed the fork-join complicacy in detail. In our
approach we have considered the fork-join complicacy.

IV. FUTURE WORK AND CONCLUSION
Testing of software is a time-consuming activity requiring

a great deal of planning and resources. For successful
automated testing, support must come from both processes
and tools. Our approach generates test scenarios directly from
UML activity diagram, where the design is reused. One of the
advantages of our approach is that, reuse of the design model
for generating test scenarios reduces the cost of building test
models or transforming models. By using our approach
defects in the design model can be detected during the
analysis of the model itself. So, the defects can be removed as
early as possible, thus reducing the cost of defect removal.
Another advantage of our approach is that it handles the

complicacy of nested fork-join pair which is more often
overlooked by other approaches.

Our future work involves developing a testing approach
that supports developers in their task of creating automated
functional test drivers for object-oriented software on a
compressed schedule. The objective here is to support the
derivation of functional system test requirements, which will
be transformed into test cases, test oracles, and test drivers
once we obtain the detailed design information. The ultimate
goal will be to address testability, coverage criteria and
automation issues, in order to fully support system testing
activities.

V. REFERENCES
Periodicals:

[1] C. Meng, L. Xuan-dong, Z. Guo-liang, “Formal Analysis on UML Real-
time Activity Diagram”, Chinese Journal of Computers, vol. 3,2004.

[2] L. Min, J. Maozhong, L. Chao, “Design of Testing Scenario Generation
Based on UML Activity Diagram”, The Engineering and Application of
Computer, Vol. 12,pp.122 124, 2001.

Books:
[3] R. S. Pressman, Software Engineering- A Practitioners Approach, 4th ed,

New York: McGraw-Hill, 1964, pp. 644-673.
[4]

Technical Reports:
[5] U2P. Unified Modeling Language: Superstructure version 2.0,April

2003. Available from http://www.omg.org/uml/as ad/03-04-01.
[6]

Papers from Conference Proceedings (Published):
[7] C. Canevet, S. Gilmore, J. Hillston, L. Kloul and P. Stevens, “Analyzing

UML 2.0 activity diagrams in the software performance engineering
process”, in Proc of WOSP'04 January 14-16, 2004, Redwood City,
California.

[8] C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic Test Case
Generation for UML Activity Diagrams”, AST’06, May 23, 2006,
Shanghai, China.

[9] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng “Generating Test
Cases from UML Activity Diagram based on Gray-Box Method”, Proc.
APSEC’04, 2004.

[10] R. Chandler, C. P. Lam, H. Li, “AD2US: An Automated Approach to
Generating Usage Scenarios from UML Activity Diagrams”, Proc. of
12th APSEC’05, 2005 .

[11] H. Li, C. P. Lam, “Using Anti-Ant-like Agents to Generate Test Threads
from the UML Diagrams”, Proc. TESTCOM 2005, LNCS 3502,
Montreal, 2005 .

[12] D. Xu, C. P. Lam, H. Li, “Using Adaptive Agents to Automatically
Generate Test Scenarios from the UML Activity Diagrams”, Proc. of
12th APSEC’05, IEEE Computer Society Press, Taipei, 2005 .

[13] W. T. Tsai, A. Saimi, L. Yu, R. Paul, “Scenario-based Object-Oriented
Testing Framework”, Proceedings of the Third International
Conference On Quality Software (QSIC’03).

[14] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, J. Kazmeier,
“Automation of GUI Testing Using a Model-driven Approach”, AST’06,
May 23, 2006, Shanghai, China.

[15] Hartmann, J., Imoberdof, C., Meisenger, M., “UML-Based Integration
Testing”, in ISSTA 2000 conference proceeding, Portland, Oregon, 22-
25 August 2000, pp. 60-70

[16] Y.Wu, M. Chen and J. Offutt, ”UML-based Integration Testing for
Component-based Software”, The 2nd International Conference on
COTS-Based Software Systems (ICCBSS). pages 251-260, Ottawa,
Canada, February 2003.

 Vol. 4, 72

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

VI. BIOGRAPHIES

Pragyan Nanda was born on May 8, 1981. She
graduated from the Jagannath Institue of
Technology, Cuttack, and persuing her M.Tech
at National Institute of Technology, Rourkela,
India. Her employment experience includes
Lecturer in Mahavir Institute of Technology,
Bhubaneswar. Her special fields of interest
included software engineering, UML-based
testing, Object Oriented Testing.

Durga Prasad Mohapatra studied his M.Tech at
National Institute of Technology, Rourkela, India.
He has received his Ph. D from Indian Institute of
Technology, Kharagpur., India His employment
experience includes being Assistant Professor at
National Institute of Technology, Rourkela. His
special fields of interest include Software
Engineering, Discrete Mathematical Structure,
slicing Object-Oriented Programming and
distributed computing.

Santosh Kumar Swain was born on : 14th
May, 1967. He graduated from O. U. A. T ,
Bhubaneswar, he studied his M.Tech at Utkal
University , Bhubaneswar. He is Pursuing PhD
in Utkal University Bhubneswar. His
employment experience includes Asst. Prof. &
Coordinator M. Tech, Department of Computer
Sc. & Engineering, Kalinga Institute of
Industrial Technology, Bhubaneswar. His
special fields of interest includes software
engineering, UML-based testing, Object
Oriented Testing, slicing.

 Vol. 4, 73

