
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Adaptive Prediction in Desktop Grids

P J Gandhi ,N A Memon, S A Patel, S. Munot and Y V Chavan

Abstract-Desktop grids are more popular platform for high
throughput applications, but due to their inherent resource
volatility it is difficult to exploit them for the applications that
require rapid turnaround. Applications in a company’s or
institute’s workload often require rapid turnaround. So desktop
grids in an enterprise or an institute are often underutilized.
Efficient resource management for short lived applications is
required to implement desktop grids at institute or enterprise
level. A novel idea of “Self managing resource selection for
desktop grids based on adaptive prediction” is proposed in this
paper. For efficient source selection ‘online prediction of running
time of application’ is very much important concept. In this
paper the c oncept of running time prediction is implemented
using adaptive algorithms. To improve the coverage, span and
confidence interval basic adaptive predictors as well as a new
Adaptive estimator scheme is implemented. By implementing the
adaptive schemes merely 100% coverage is obtained which is far
better than the desirable 95% coverage compare to earlier
schemes.

Keywords: Grid Computing, Adaptive Predication, Resource

selection in desktop Grid.

I. INTRODUCTION
 Desktop grids use the idle cycles of mostly desktop PC’s

to support large-scale computation and data storage. Today,
these types of computing platforms are the largest distributed
computing systems in the world. The most popular project,
SETI@home, uses over 20 TeraFlop/sec provided by hundreds
of thousands of desktops. Indeed, it is a well-studied fact that
machines primarily devoted to regular human-dependent
interactions, like e-office applications (work processing,
spreadsheets, etc.) and e-communications such as instant
messaging, e-mail, and Internet browsing barely use their
resources. For instance, Heap [5] reports nearly 95% CPU
idleness amongst Unix machines, with an even higher value of
97% measured in Windows machines assigned to academic
classrooms[14]. Furthermore, in their comprehensive study of
more than 200000 SETI@home [19] hosts, Anderson and
Fedak [6] report that an average of 89.9% of CPU was
volunteered to public computing through the BOINC platform
[7], meaning that roughly 90% of CPU would have been

P J Gandhi ,N A Memon, S A Patel, S. Munot and Y V Chavan are with
Maharashtra Academy of Engineering, Alandi (D), Pune

Gandhi.pallav@gmail.com, Noor.876@gmail.com,
Suchit_gollu@yahoo.com, sachin.munot@gmail.com,
yvchavan@maepune.com

wasted if it was not exploited by BOINC projects. Numerous
other projects, which span a wide range of scientific domains,
also use the cumulative computing power offered by desktop
grids, and there have also been commercial endeavors for
harnessing the computing power within an enterprise, i.e., an
organization’s local area network.

Despite the popularity and success of many desktop grid
projects, the volatility of the hosts within desktop grids has
been poorly understood. Due to lack of resource management
techniques, application of desktop grid is limited to high
throughput applications that consist of very large number of
tasks. But in an enterprise or institute most of the time
applications consist of small or moderate number of tasks. In
this case desktop grids are underutilized. So it’s a big issue of
research that how to use grid networks effectively for short
lived application. In this paper we have tried to provide
solution for this so that grid networks can be used in
enterprises & institutes. The solution provided in this paper is
basically based on the Adaptive prediction of resource
availability.

So this paper leads us to a solution to develop a grid
network in an enterprise or institute which can perform short
lived as well as high throughput applications efficiently.

The rest of this paper is organized as follows. Section II
describes the problem definition regarding the implementation
of short lived applications efficiently. Section III describes
various scheduling algorithms. Section IV presents the idea of
adaptive application for resource management. Section V
describes simulated prediction results in MATLAB. Section VI
concludes the work.

II. IMPLEMENTATION OF SHORT LIVED
APPLICATION ON DESKTOP GRID

A. Grid functioning
We consider the problem of scheduling an application that

consists of T independent, identical tasks onto a desktop grid.
The desktop grid comprises N hosts that can execute
application tasks. These hosts are individually owned and can
only be used for running application tasks when up and when
their CPU is not used by their owners, making host and CPU
availability dynamic. The hosts are managed by a master,
which will call the “server”, in the following way. The server
holds all the input data for ‘T’ tasks, when any of the hosts
gets free it sends notification to the server. The server
maintains a queue of available hosts i.e. “Ready Queue” and
may choose any one of them to complete the task. When
owner of the host runs an application task, for time being
process is suspended and it can be resumed on the same host
later on. When an application task is running on the host, it

 Vol. 4, 96

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

sends “Heart Beats” to server every minute. If in between host
is switched off then same task can be restarted on another host.

B. Problem statement
Given above problem model, we consider the case in which

‘T’ tasks are to be completed on ‘N’ hosts. For the applications
which consist of very high number of tasks T >>N i.e. number
of tasks is greater than number of hosts. In this application
FCFS (First Come First Serve) gives the optimal
performance. This is the strategy used by almost all the
existing desktop grids like SETI@HOME,BOINC etc.

In this paper we focus on short live applications i.e. T<=N.
For T=N is sub optimal and for T<N performance of FCFS is
poor.

Figure-1 Task Completion vs. Time [9]

Above simulation results are obtained for N=190, 1.5 Ghz

each and T = 100,200,400 tasks. As we can see for T = 100
(T<<N) performance is poor, T=200(T=~ N) performance is
sub optimal and for T=400 (T>>N) performance is almost
optimal.

 So, from above results it is clear that for short live
application there must be some resource selection scheme
which can improve the performance.

III. SCHEDULING METHODOLOGIES
Traditional eager scheduling algorithms like First Come

First Served (FCFS), which yield good performance in high-
throughput oriented systems, are normally inefficient if applied
unchanged in environments where fast turnaround times are
sought. In order to adapt FCFS to fast turnaround-oriented
environments several changes are applied. First, support for
shared checkpoints are added. Under the shared model,
checkpoints are kept in a common repository and not
exclusively at the executing machine’s storage. This permits
checkpoints to be shared amongst machines, allowing tasks to
be resumed, moved or replicated to another machines,
accordingly to the circumstances. This effectively provides for
task mobility, and consequently for an improved usage of
resources relatively to private checkpointing. A requirement of
the shared checkpoint model is the existence of a storage
infrastructure accessible to all machines and able to support the
possible concurrent access of the computers involved in
computation. In a medium-sized institutional environment, a
regular PC acting as file server should suffice to implement a

shared checkpoint service. Furthermore, this service can be
located jointly with the scheduler service, to promote synergies
between the scheduling and the checkpointing systems. Based
on shared checkpoints, and using FCFS as base, several
scheduling policies were devised, namely FCFS-AT (AT
stands for adaptive timeout), FCFS-TR (task replication) and
FCFS-PRDCT-DMD (prediction on demand).

A. FCFS-AT
FCFS-AT improves the base FCFS with the inclusion of an

adaptive timeout that sets a time limit for the termination of a
task. This timeout defines the maximum time conceded to the
machine for completing the execution of the assigned task.
Should the timeout expire before the task has been completed,
the scheduler considers the task as non-completed and can
therefore reassign it to another machine, where it will be
restarted, possibly from the last stable checkpoint (assuming
shared checkpoint is enabled).

The timeout is defined when a task is assigned to a
requesting machine and its duration takes into account the
needed CPU reference time to complete the task as well as the
machine computing performance as given by the Bytemark
benchmark indexes [4]. These values are used to compute the
minimum time needed by the candidate machine to complete
the task, estimating an ideal execution, that is, a fully
dedicated and flawless machine. To accommodate for reality,
a tolerance is added to the base timeout. This tolerance,
defined by way of a percentage of the timeout’s base-time,
varies accordingly to the CPU reference time still needed to
complete the task (the bigger the reference CPU time needs,
the bigger the tolerance percentage). However, if the
execution is scheduled for a night-period or for a weekend,
the tolerance is fixed, respectively to 10% and 5%. This is to
take advantage of the stability of the desktop grid resources
during period of low or non-existence of human presence.

B. FCFS-TR
FCFS-TR adds task replication on top of the FCFS-AT

scheduling policy. The main strategy is to resort to task
replication at the terminal phase of the computation, when all
uncompleted tasks are already assigned and there is at least
one free machine. The underlying principle is that replicating
a task, especially if the replica is scheduled to a faster
machine than the current one, augments the probability of a
faster completion of the task, and thus might reduce the
turnaround time. Even, if the replica is assigned to a slower or
equal performance machine, it can still be useful acting as
backup in case if the primary machine fails or get delayed.

In order to avoid excessive replicas of a same task,
something that could perturb the balanced access to resources,
the number of replicas of a task is maintained under a
predefined threshold. Therefore, tasks which level of
replication has already reached the limit can only be further
replicated when one of the current replicas is interrupted.
Furthermore, when a task is terminated all other results
produced by replicas that might exist are simply discarded
(we do not consider redundancy for sabotage-tolerance
purposes, assuming that all computing resources behaves
honestly).

 Vol. 4, 97

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

C. FCFS-PRDCT-DMD
The FCFS-PRDCT-DMD scheduling policy resorts to

short-term prediction regarding machines’ availability on top
of FCFS-TR. When a prediction indicates that a currently
requested machine might fail in the next scheduling interval,
the scheduler orders a checkpoint (henceforth referred as
“checkpoint on demand”) and then promotes the creation of a
replica if conditions are met (that is, at least a free machine
exists and the maximum number of replicas for the considered
task has not yet been reached). The rationale behind this
policy is to anticipate unavailability of machines, taking the
proper measures to reduce or even eliminate the effect of the
machine unavailability on the execution of the application. In
this work, the prediction method used was the sequential
minimal optimization (SMO) algorithm which yielded the
best prediction results in a previous study [1].

 Here in this paper we will define prediction of running
time of task using Adaptive LMS Estimator. To understand
that first of all we will see the adaptive as well LMS
Estimator.

IV. ADAPTIVE ESTIMATION TO MAKE ONLINE
PREDICTION OF RUNNING TIME OF TASK

A. Online Prediction of Running time of Applications.
To provide consistent high performance when running on

typical shared, unreserved distributed computing
environments, adaptive applications must exploit the degrees
of freedom such environments offer, carefully choosing how
and where to run their tasks. To make such decisions,
applications require predictions of the performance of each of
the alternatives. If the application could predict the running
time of the task on each of the available hosts, it could trivially
choose an appropriate host to run the task. Even if no host
existed on which the task could meet its original deadline, such
predictions of running time would permit the application to
modify the resource requirements of the task or its deadline
until an appropriate host could be found.

Evaluating the quality of the confidence interval [tlb,tub] is
a somewhat complex endeavor. Suppose we ran a wide variety
of testcases with a specified confidence, say 95%. If we used
the ideal algorithm for computing confidence intervals and the
best possible predictor, the lengths of the tasks’ confidence
intervals would be the minimum possible such that 95% of the
tasks would have running times in their predicted intervals. An
imperfect algorithm, such as ours, will compute confidence
intervals that were larger or smaller than ideal where fewer or
more than 95% of the tasks complete in their intervals. The
important point is that to evaluate a confidence interval
algorithm, we must measure the lengths of the confidence
intervals it produces and the number of tasks which complete
within these confidence intervals. To evaluate confidence
intervals, we will use following two metrics:

 Coverage: The fraction of tasks which complete with their
predicted confidence intervals.

 Span : The average width of the confidence interval width
in seconds.

The ideal system will have the minimum possible span

such that the coverage is more than 95%.

Now in this paper prediction method which is used is
Adaptive LMS Estimator. To understand LMS Estimator we
will first go through Adaptive Estimator first in section 4.2 and
than LMS Estimator in section 4.3.

B. The Adaptive Estimator [3]
Consider the estimator as an FIR structure with coefficients

h(.), so that the (discrete) error at instant ‘n’,
Te(n) d(n) h (n) x(n)

− −
= − (4.1)

T2 2 T

T

E{e (n)} E{d (n)} h (n)E{x(n)x (n)}h(n)

2E[d(n)h (n)x(n)]
− − −

− −

= +

−
 (4.2)

Defining T
xxE{x(n)x (n)} [R (n)]

− −
= as the

autocorrelation matrix of input vector x(n)
−

, and
TT

dxR E{d(n)x (n)}
−

= as the cross correlation (vector)

between d(n) and x(n)
−

, with T Th (n)x(n) h(n)x (n)
− − − −

= ,

one obtains mean squared error

ξ σ
− − − −

= + −2 T T
d xx dx(n) h (n)[R (n)]h(n) 2R (n)h(n)

 (4.3)

Therefore minimum ξ(n) occurs for h
(n)(n)
h

ξξ
−

∂
∇ =

∂
=

0, resulting in 0h (n)
−

 or

 1 T
opt xx dxh (n) [R (n)] [R (n)]−

− −
=

 (4.4)

The continuous form of equation (4.4) is
0 xx dxh (t) [R (t)] R (t)

− −
⊗ = , which is the celebrated

(continuous) Wiener-Hopf integral equation whose solution (in
principle) provides the optimum processor (coefficient) vector

0h (t)
−

for stationary random processes x(t)
−

. The general

solution to equation (4.4) has not been found till now, in
continuous time. The matrix formulation of this desired
equation is described in alternate fashion. The convolution
operation h(n) x(n)⊗ and the vector multiplication or inner
product operation described above are essentially the same, in
the context of the final result.

There are essentially two types of discrete solutions to
equation (4.4) exemplified by the RLS (Recursive Least
Squares) and the LMS (Least Mean Square) adaptive
algorithms accepted as standard terminology, and briefly
discussed in the sequel.

 Vol. 4, 98

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

C. The LMS Estimator [18]
The RLS algorithm uses the least squares concept, which

briefly denotes the implementation of minimizing the sum of
squares of the difference between a time dependent function

()if t and a relevant set of weighted measurements ix
according to an optimum fit requirement,

21

0
() ()

M
i k

k
f t h x i k

−

=
− − =∑ ∑⎡ ⎤

⎢ ⎥⎣ ⎦ Minimum

where the h’s are suitable weights/coefficients. One is
following equations (4.1) to (4.4) in section. 4.1, where in

() (.)if t d≡ averaging summation and the weighted sum

above is the equivalent of Th (.)x(.)
− −

 of equation (4.1) in

section 4.1. The LMS algorithm is a simplification of the RLS
algorithm, wherein g(n) [P(n)]x(n)

−−
= is replaced by

x(n)µ
−

 with µ a constant called the adaptation constant or

step size parameter like [()]P n in the relevant literature. This
is interpreted to mean that the statistically derived discrete
parameter [()]P n is replaced by an instantaneous constant
estimate of this parameter.

For an FIR (transversal type) processor with tap weights
h(n) at instant ‘n’, k=0,1….M signifying the taps as

exemplified , If
M 2

k 0
(n) E[d(n) h(k)x(n k)]ξ

=
= − −∑ is

the measured (squared) error with () ()kh k h n= , then the
counterpart here of the weight update procedure adopted in the
RLS scheme, follows the steepest descent concept. To apply
this concept ‘ξ’ is considered related h(k) in inverted parabolic
fashion, ξ is h(k). The objective is to find that h(k) recursively
that occurs at the minimum of ξ. For this, starting at any hk(n)
(for a given k), the time update hk(n+1) is corrected or adjusted
with respect to hk(n) by a constant µ times the slope or gradient

k(n)∇ , taken in the direction seeking the pit of the parabola.

Hence
µ

+ = + −∇kh(n 1) h(n) { (n)}
2

, the factor ½

will be justified below. In this case

k e x2E{e(n)x(n k)} 2R (k)
h

ξ∂
∇ = = − = −

∂

Where Rex (k) is the cross correlation between error e(n)
and (delayed) tap input x(n-k).

In effect,

 e xh(n 1) h(n) R (k)µ+ = +
 (4.5)

In the LMS algorithmic approximation, Rex(.) is replaced
by its instantaneous value i.e. error times tap input vector

() ()e n x n k−

∴ h(n 1) h(n) e(n)x(n k)µ
−−

+ = + − (4.6)

Equation (4.6) is the LMS weight update equation; clearly
the approximation of replacing the actual curve between ξ
(n+1) and ξ(n) by the slope between these two values, will be
better the smaller the µ(in principle). In practice because of the
random nature of x(.)

−
 and e(.), this principle suffers consider

blurring.

V. RESULTS
As it is mentioned in section 4.1 coverage and span these

two are important parameters in online prediction of task. The
idle system should have coverage of 95% with minimum span.

 Here we have defined span in terms of accuracy in
prediction. If our prediction is having percentage mean error
performance of 1% only than we can define span

 Average confidence Interval = Span = [tlb,tub]
where tlb= predicted time – [percentage mean
 error . predicted time]
 tub= predicted time + [percentage
 mean error . predicted time]
Coverage is the fraction of tasks which complete with their

predicted confidence intervals. So we can also define coverage
in terms of percentage mean error. In fact

If our normal predictor is having percentage mean error of
1-2 % and we define the span as mentioned above than its’
coverage will be merely 100%. This is the most desirable
condition in online prediction of running time of task.

Here we have tried to achieve merely 100% coverage using
LMS Estimator. For simulation of LMS Estimator, we have
used a database shown in figure 2. Figure 3 shows the error
performance of LMS Estimator. From the results it is clear that
after convergence error in prediction is very low almost less
than 0.5 %, where as mean of the percentage error is only
0.2442 % . So, using LMS Estimator we can predict he
running time of task with less than 1% percentage prediction
error . Now if we define confidence interval as above than
coverage will be almost 100%. For the given case length of the
confidence interval is only 0.4884% of the running time. If we
provide the calculated confidence interval than more than 99%
of the tasks will be having their running time lying into the
confidence interval. So, coverage is more than 99% with very
small confidence interval. Small Interval and more than 99%
coverage is the most desirable feature to select resources most
efficiently in desktop grid networks.

Figure 2. Database of almost 1500 tasks with their running time.

 Vol. 4, 99

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Figure 3. Error Performance Of LMS Estimator

VI. CONCLUSION

 Thus in this paper we provided the solutions to implement
multi purpose grids in enterprises as well in institutes. Desktop
Grids are more famous for the applications with very large
numbers of tasks. But Desktop Grids have failed to effectively
deliver the results when used for small applications. Here in
this paper we have proposed a self-managing resource
selection scheme based on adaptive prediction which would
help Desktop Grids to deliver better results when used for
small applications and the data streaming capability will help
the small grids to combine and deliver results for larger
applications. The important concept of online prediction of
running time of task is implemented using Adaptive Schemes.
As results show the success to get merely 100% coverage is
achieved using adaptive schemes.This will be a very useful
concept for applications like audio-video streaming where
coverage must be of minimum 95%.

VII. REFERENCES

[1] A. Andrzejak, P. Domingues, and L. Silva, "Classifier-based Capacity

Prediction for Desktop Grids," presented at Integrated research in Grid
Computing - CoreGRID workshop, Pisa,Italy, 2005.

[2] Berman, F. and R. Wolski: 1996, ‘Scheduling From the Perspective of
the Application’.In: Proceedings of the Fifth IEEE Symposium on High
Performance Distributed Computing HPDC96. pp. 100–111.

[3] Bernard Widrow and Samuel D. Stearns, Adaptive Signal Processing,
Pearson Education, 2004.

[4] BYTE, "BYTEmark project page
(http://www.byte.com/bmark/bmark.htm)," Byte, 1996.

[5] D. G. Heap, "Taurus - A Taxonomy of Actual Utilization of Real UNIX
and Windows Servers," IBM White Paper GM12-0191, 2003.

[6] D. Anderson and G. Fedak, "The Computational and Storage Potential
of Volunteer Computing," 2005.

[7] D. Anderson, "BOINC: A System for Public-Resource Computing and
Storage," presented at 5th IEEE/ACM International Workshop on Grid
Computing, Pittsburgh, USA., 2004.

[8] "Distributed Computing Info (http://distributedcomputing.info/)," 2006.

[9] D. Kondo, A. Chien, and H. Casanova, "Resource management for rapid
application turnaround on entreprise desktop grids," presented at 2004
ACM/IEEE conference on Supercomputing, 2004.

[10] Dinda, P., B. Lowekamp, L. Kallivokas, and D. O’Hallaron: 1999, ‘The
Case forPrediction-Based Best-Effort Real-Time Systems’. In: Proc. of
the 7th International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 1999), Vol. 1586 of Lecture Notes in Computer
Science. San Juan, PR: Springer-Verlag, pp. 309–318. Extended version
as CMU Technical Report CMU-CS-TR-98-174.

[11] D.Hanselman and B.Littlefield, Mastering MATLAB 7, Pearson
Education, 2005.

[12] E.C.Ifeachor and B.W.Jervis, Digital Signal Processing-A Practical
Approach, Pearson Education, 2005.

[13] Monson.H.Hayes, Statistical Digital Signal Processing and Modeling,
John Wiley Publication, 2001.

[14] P. Domingues, P. Marques, and L. Silva, "Resource Usage of Windows
Computer Laboratories," presented at International Conference Parallel
Processing (ICPP 2005)/Workshop PEN-PCGCS, Oslo,Norway, 2005.

[15] Richard Bronson, Theory and Problems of Matrix Operations,
Schaum’s Outline Series, Mc Graw Hill Publications, 1988.

[16] Rudra Pratap, Getting Started with MATLAB 7, Oxford University
Press, Indian edition, 2005.

[17] Simon Haykin, Adaptive Filter Theory, Pearson Education, 4th edition,
2002.

[18] Simon Haykin, Digital Communications, John Wiley Publication, 2001.
[19] SETI, "SETI@Home Project (http://setiathome.berkeley.edu/)," 2005.

VIII. APPENDIX

A. Database Used
Section A.1.1 is the small spread database which has been

mainly used for the implementation of the various algorithms.

1) Small Spread Database Used
dataSS = x = [1.6280 1.6282 1.6280 1.6275 1.6270 1.6272

1.6272 1.6270 1.6270 1.6267 1.6265 1.6265 1.6268 1.6265
1.6266 1.6264 1.6260 1.6260 1.6258 1.6253 1.6258 1.6261
1.6260 1.6256 1.6256 1.6260 1.6260 1.6262 1.6258 1.6258
1.6255 1.6256 1.6262 1.6267 1.6270 1.6269 1.6265 1.6267
1.6265 1.6270 1.6275 1.6275 1.6270 1.6280 1.6285 1.6285
1.6290 1.6285 1.6287 1.6288 1.6288 1.6287 1.6287 1.6285
1.6287 1.6287 1.6295 1.6286 1.6285 1.6281 1.6283 1.6286
1.6288 1.6290 1.6265 1.6267 1.6272 1.6268 1.6260 1.6264
1.6270 1.6265 1.6265 1.6262 1.6265 1.6260 1.6265 1.6258
1.6258 1.6260 1.6257 1.6249 1.6248 1.6245 1.6249 1.6245
1.6250 1.6258 1.6253 1.6252 1.6255 1.6257 1.6248 1.6255
1.6250 1.6251 1.6248 1.6248 1.6259 1.6263 1.6263 1.6260
1.6262 1.6260 1.62654 1.6265 1.6265 1.6265 1.6265 1.6270
1.6275 1.6280 1.6279 1.6275 1.6280 1.6285 1.6285 1.6280
1.6280 1.6263 1.6280 1.6281 1.6287 1.6278 1.6278 1.6280
1.6283 1.6280 1.6283 1.6286 1.6265 1.6273 1.6276 1.6272
1.6266 1.6268 1.6271 1.6269 1.6267 1.6266 1.6266 1.6263
1.6265 1.6263 1.6263 1.6264 1.6260 1.6255 1.6256 1.6252
1.6251 1.6253 1.6257 1.6259 1.6255 1.6254 1.6258 1.6259
1.6254 1.6256 1.6253 1.6253 1.6253 1.6253 1.6255 1.6262
1.6267 1.6265 1.6263 1.6265 1.6264 1.6267 1.6270 1.6270
1.6268 1.6275 1.6280 1.6283 1.6285 1.6281 1.6284 1.6287
1.6286 1.6283 1.6284 1.6279 1.6283 1.6285 1.6290 1.6283
1.6282 1.6281 1.6283];

IX. ACKNOWLEDGEMENT
This paper is based upon the research work supported by

Signal Processing Society of MAE-IEEE Student Branch.

 Vol. 4,100

