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Abstract-Desktop grids are more popular platform for high  
throughput applications, but due to their inherent resource 
volatility it is difficult to exploit them for the applications that 
require rapid turnaround. Applications in a company’s or 
institute’s workload often require rapid turnaround. So desktop 
grids in an enterprise or an institute are often underutilized. 
Efficient resource management for short lived applications is 
required to implement desktop grids at institute or enterprise 
level. A novel idea of “Self managing resource selection for 
desktop grids based on adaptive prediction” is proposed in this 
paper. For efficient source selection ‘online prediction of running 
time of application’ is very much important concept. In this 
paper the c oncept of running time prediction is implemented 
using adaptive algorithms. To improve the coverage, span and 
confidence interval basic adaptive predictors as well as a new 
Adaptive estimator scheme is implemented. By implementing the 
adaptive schemes merely 100% coverage is obtained which is far 
better than the desirable 95% coverage compare to earlier 
schemes.  

 
Keywords: Grid Computing, Adaptive Predication, Resource 

selection in desktop Grid. 

 

I. INTRODUCTION 
 Desktop grids use the idle cycles of mostly desktop PC’s 

to support large-scale computation and data storage. Today, 
these types of computing platforms are the largest distributed 
computing systems in the world. The most popular project, 
SETI@home, uses over 20 TeraFlop/sec provided by hundreds 
of thousands of desktops. Indeed, it is a well-studied fact that 
machines primarily devoted to regular human-dependent 
interactions, like e-office applications (work processing, 
spreadsheets, etc.) and e-communications such as instant 
messaging, e-mail, and Internet browsing barely use their 
resources. For instance, Heap [5] reports nearly 95% CPU 
idleness amongst Unix machines, with an even higher value of 
97% measured in Windows machines assigned to academic 
classrooms[14]. Furthermore, in their comprehensive study of 
more than 200000 SETI@home [19] hosts, Anderson and 
Fedak [6] report that an average of 89.9% of CPU was 
volunteered to public computing through the BOINC platform 
[7], meaning that roughly 90% of CPU would have been  
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wasted if it was not exploited by BOINC projects. Numerous 
other projects, which span a wide range of scientific domains, 
also use the cumulative computing power offered by desktop 
grids, and there have also been commercial endeavors for 
harnessing the computing power within an enterprise, i.e., an 
organization’s local area network. 

Despite the popularity and success of many desktop grid   
projects, the volatility of the hosts within desktop grids has 
been poorly understood. Due to lack of resource management 
techniques, application of desktop grid is limited to high 
throughput  applications that consist of very large number of 
tasks. But in an enterprise or institute most of the time 
applications consist of small or moderate number of tasks. In 
this case desktop grids are underutilized. So it’s a big issue of 
research that how to use grid networks effectively for short 
lived application. In this paper we have tried to provide 
solution for this so that grid networks can be used in 
enterprises & institutes. The solution provided in this paper is 
basically based on the Adaptive prediction of resource 
availability. 

So this paper leads us to a solution to develop a grid 
network in an enterprise or institute which can perform short 
lived as well as high throughput applications efficiently.  

The rest of this paper is organized as follows. Section II 
describes the problem definition regarding the implementation 
of short lived applications efficiently. Section III describes 
various scheduling algorithms. Section IV presents the idea of 
adaptive application for resource management. Section V 
describes simulated prediction results in MATLAB. Section VI 
concludes the work. 

II. IMPLEMENTATION OF SHORT LIVED 
APPLICATION ON DESKTOP GRID 

A. Grid functioning 
We consider the problem of scheduling an application that 

consists of T independent, identical tasks onto a desktop grid. 
The desktop grid comprises N hosts that can execute 
application tasks. These hosts are individually owned and can 
only be used for running application tasks when up and when 
their CPU is not used by their owners, making host and CPU 
availability dynamic. The hosts are managed by a master, 
which will call the “server”, in the following way. The server 
holds all the input data for ‘T’ tasks, when any of the hosts 
gets free it sends notification to the server. The server 
maintains a queue of available hosts i.e. “Ready Queue” and 
may choose any one of them to complete the task. When 
owner of the host runs an application task, for time being 
process is suspended and it can be resumed on the same host 
later on. When an application task is running on the host, it 
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sends “Heart Beats” to server every minute. If in between host 
is switched off then same task can be restarted on another host.  

B.  Problem statement 
Given above problem model, we consider the case in which 

‘T’ tasks are to be completed on ‘N’ hosts. For the applications 
which consist of very high number of tasks T >>N i.e. number 
of tasks is greater than number of hosts. In this application 
FCFS (First Come First Serve) gives the optimal 
performance. This is the strategy used by almost all the 
existing desktop grids like SETI@HOME,BOINC etc. 

In this paper we focus on short live applications i.e. T<=N. 
For T=N is sub optimal and for T<N performance of FCFS is 
poor. 

           
Figure-1 Task Completion vs. Time [9] 

 
Above simulation results are obtained for N=190, 1.5 Ghz 

each and T = 100,200,400 tasks. As we can see for T = 100 
(T<<N) performance is poor, T=200(T=~ N) performance is 
sub optimal and for T=400 (T>>N) performance is almost 
optimal. 

 So, from above results it is clear that for short live 
application there must be some resource selection scheme 
which can improve the performance. 

 

III.  SCHEDULING METHODOLOGIES 
Traditional eager scheduling algorithms like First Come 

First Served (FCFS), which yield good performance in high-
throughput oriented systems, are normally inefficient if applied 
unchanged in environments where fast turnaround times are 
sought. In order to adapt FCFS to fast turnaround-oriented 
environments several changes are applied. First, support for 
shared checkpoints are added. Under the shared model, 
checkpoints are kept in a common repository and not 
exclusively at the executing machine’s storage. This permits 
checkpoints to be shared amongst machines, allowing tasks to 
be resumed, moved or replicated to another machines, 
accordingly to the circumstances. This effectively provides for 
task mobility, and consequently for an improved usage of 
resources relatively to private checkpointing. A requirement of 
the shared checkpoint model is the existence of a storage 
infrastructure accessible to all machines and able to support the 
possible concurrent access of the computers involved in 
computation. In a medium-sized institutional environment, a 
regular PC acting as file server should suffice to implement a 

shared checkpoint service. Furthermore, this service can be 
located jointly with the scheduler service, to promote synergies 
between the scheduling and the checkpointing systems. Based 
on shared checkpoints, and using FCFS as base, several 
scheduling policies were devised, namely FCFS-AT (AT 
stands for adaptive timeout), FCFS-TR (task replication) and 
FCFS-PRDCT-DMD (prediction on demand). 

A. FCFS-AT 
FCFS-AT improves the base FCFS with the inclusion of an 

adaptive timeout that sets a time limit for the termination of a 
task. This timeout defines the maximum time conceded to the 
machine for completing the execution of the assigned task. 
Should the timeout expire before the task has been completed, 
the scheduler considers the task as non-completed and can 
therefore reassign it to another machine, where it will be 
restarted, possibly from the last stable checkpoint (assuming 
shared checkpoint is enabled). 

The timeout is defined when a task is assigned to a 
requesting machine and its duration takes into account the 
needed CPU reference time to complete the task as well as the 
machine computing performance as given by the Bytemark 
benchmark indexes [4]. These values are used to compute the 
minimum time needed by the candidate machine to complete 
the task, estimating an ideal execution, that is, a fully 
dedicated and flawless machine. To accommodate for reality, 
a tolerance is added to the base timeout. This tolerance, 
defined by way of a percentage of the timeout’s base-time, 
varies accordingly to the CPU reference time still needed to 
complete the task (the bigger the reference CPU time needs, 
the bigger the tolerance percentage). However, if the 
execution is scheduled for a night-period or for a weekend, 
the tolerance is fixed, respectively to 10% and 5%. This is to 
take advantage of the stability of the desktop grid resources 
during period of low or non-existence of human presence. 

B.  FCFS-TR 
FCFS-TR adds task replication on top of the FCFS-AT 

scheduling policy. The main strategy is to resort to task 
replication at the terminal phase of the computation, when all 
uncompleted tasks are already assigned and there is at least 
one free machine. The underlying principle is that replicating 
a task, especially if the replica is scheduled to a faster 
machine than the current one, augments the probability of a 
faster completion of the task, and thus might reduce the 
turnaround time. Even, if the replica is assigned to a slower or 
equal performance machine, it can still be useful acting as 
backup in case if the primary machine fails or get delayed. 

In order to avoid excessive replicas of a same task, 
something that could perturb the balanced access to resources, 
the number of replicas of a task is maintained under a 
predefined threshold. Therefore, tasks which level of 
replication has already reached the limit can only be further 
replicated when one of the current replicas is interrupted. 
Furthermore, when a task is terminated all other results 
produced by replicas that might exist are simply discarded 
(we do not consider redundancy for sabotage-tolerance 
purposes, assuming that all computing resources behaves 
honestly). 
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C. FCFS-PRDCT-DMD 
The FCFS-PRDCT-DMD scheduling policy resorts to 

short-term prediction regarding machines’ availability on top 
of FCFS-TR. When a prediction indicates that a currently 
requested machine might fail in the next scheduling interval, 
the scheduler orders a checkpoint (henceforth referred as 
“checkpoint on demand”) and then promotes the creation of a 
replica if conditions are met (that is, at least a free machine 
exists and the maximum number of replicas for the considered 
task has not yet been reached). The rationale behind this 
policy is to anticipate unavailability of machines, taking the 
proper measures to reduce or even eliminate the effect of the 
machine unavailability on the execution of the application. In 
this work, the prediction method used was the sequential 
minimal optimization (SMO) algorithm which yielded the 
best prediction results in a previous study [1]. 

 Here in this paper we will define prediction of running 
time of task using Adaptive LMS Estimator. To understand 
that first of all we will see the adaptive as well LMS 
Estimator. 

 

IV. ADAPTIVE ESTIMATION TO MAKE ONLINE 
PREDICTION OF RUNNING TIME OF TASK 

A. Online Prediction of Running time of Applications. 
To provide consistent high performance when running on 

typical shared, unreserved distributed computing 
environments, adaptive applications must exploit the degrees 
of freedom such environments offer, carefully choosing how 
and where to run their tasks. To make such decisions, 
applications require predictions of the performance of each of 
the alternatives. If the application could predict the running 
time of the task on each of the available hosts, it could trivially 
choose an appropriate host to run the task. Even if no host 
existed on which the task could meet its original deadline, such 
predictions of running time would permit the application to 
modify the resource requirements of the task or its deadline 
until an appropriate host could be found. 

Evaluating the quality of the confidence interval [tlb,tub] is 
a somewhat complex endeavor. Suppose we ran a wide variety 
of testcases with a specified confidence, say 95%. If we used 
the ideal algorithm for computing confidence intervals and the 
best possible predictor, the lengths of the tasks’ confidence 
intervals would be the minimum possible such that 95% of the 
tasks would have running times in their predicted intervals. An 
imperfect algorithm, such as ours, will compute confidence 
intervals that were larger or smaller than ideal where fewer or 
more than 95% of the tasks complete in their intervals. The 
important point is that to evaluate a confidence interval 
algorithm, we must measure the lengths of the confidence 
intervals it produces and the number of tasks which complete 
within these confidence intervals. To evaluate confidence 
intervals, we will use following two metrics: 

 Coverage: The fraction of tasks which complete with their 
predicted confidence intervals. 

 Span : The average width of the confidence interval width 
in seconds. 

 
The ideal system will have the minimum possible span 

such that the coverage is more than 95%. 

Now in this paper prediction method which is used is 
Adaptive LMS Estimator. To understand LMS Estimator we 
will first go through Adaptive Estimator first in section 4.2 and 
than LMS Estimator in section 4.3.  

 

B. The Adaptive Estimator [3]   
Consider the estimator as an FIR structure with coefficients 

h(.), so that the (discrete) error at instant ‘n’, 
Te(n) d(n) h (n) x(n)

− −
= −   (4.1)     

T2 2 T

T

E{e (n)} E{d (n)} h (n)E{x(n)x (n)}h(n)

2E[d(n)h (n)x(n)]
− − −

− −

= +

−
                     (4.2)                    

Defining T
xxE{x(n)x (n)} [R (n)]

− −
=  as the 

autocorrelation matrix of input vector x(n)
−

, and 
TT

dxR E{d(n)x (n)}
−

= as the cross correlation (vector) 

between d(n) and x(n)
−

, with T Th (n)x(n) h(n)x (n)
− − − −

= , 

one obtains mean squared error 

ξ σ
− − − −

= + −2 T T
d xx dx(n) h (n)[R (n)]h(n) 2R (n)h(n)  

                             (4.3) 

Therefore minimum ξ(n) occurs for h
(n)(n)
h

ξξ
−

∂
∇ =

∂
= 

0, resulting in 0h (n)
−

 or 

 1 T
opt xx dxh (n) [R (n)] [R (n)]−

− −
=    

                         (4.4) 

The continuous form of equation (4.4) is 
0 xx dxh (t) [R (t)] R (t)

− −
⊗ = , which is the celebrated 

(continuous) Wiener-Hopf integral equation whose solution (in 
principle) provides the optimum processor (coefficient) vector 

0h (t)
−

for stationary random processes x(t)
−

. The general 

solution to equation (4.4) has not been found till now, in 
continuous time. The matrix formulation of this desired 
equation is described in alternate fashion. The convolution 
operation h(n) x(n)⊗  and the vector multiplication or inner 
product operation described above are essentially the same, in 
the context of the final result.   

There are essentially two types of discrete solutions to 
equation (4.4) exemplified by the RLS (Recursive Least 
Squares) and the LMS (Least Mean Square) adaptive 
algorithms accepted as standard terminology, and briefly 
discussed in the sequel. 
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C. The LMS Estimator [18] 
The RLS algorithm uses the least squares concept, which 

briefly denotes the implementation of minimizing the sum of 
squares of the difference between a time dependent function 

( )if t  and a relevant set of weighted measurements ix  
according to an optimum fit requirement, 

21
 

0
( ) ( )

M
i k

k
f t h x i k

−

=
− − =∑ ∑⎡ ⎤

⎢ ⎥⎣ ⎦  Minimum 

where the h’s are suitable weights/coefficients. One is 
following equations (4.1) to (4.4) in section. 4.1, where in 

( ) (.)if t d≡  averaging summation and the weighted sum 

above is the equivalent of Th (.)x(.)
− −

 of equation (4.1) in 

section 4.1. The LMS algorithm is a simplification of the RLS 
algorithm, wherein g(n) [P(n)]x(n)

−−
= is replaced by 

x(n)µ
−

 with µ a constant called the adaptation constant or 

step size parameter like [ ( )]P n  in the relevant literature. This 
is interpreted to mean that the statistically derived discrete 
parameter [ ( )]P n  is replaced by an instantaneous constant 
estimate of this parameter.  

For an FIR (transversal type) processor with tap weights 
h(n) at instant ‘n’, k=0,1….M signifying the taps as 

exemplified , If 
M 2

k 0
(n) E[d(n) h(k)x(n k)]ξ

=
= − −∑  is 

the measured (squared) error with ( ) ( )kh k h n= , then the 
counterpart here of the weight update procedure adopted in the 
RLS scheme, follows the steepest descent concept. To apply 
this concept ‘ξ’ is considered related h(k) in inverted parabolic 
fashion, ξ is h(k). The objective is to find that h(k) recursively 
that occurs at the minimum of ξ. For this, starting at any hk(n) 
(for a given k), the time update hk(n+1) is corrected or adjusted 
with respect to hk(n) by a constant µ times the slope or gradient 

k(n)∇ , taken in the direction seeking the pit of the parabola. 

Hence
µ

+ = + −∇kh(n 1) h(n) { (n)}
2

, the factor ½ 

will be justified below. In this case 

k e x2E{e(n)x(n k)} 2R (k)
h

ξ∂
∇ = = − = −

∂
 

Where Rex (k) is the cross correlation between error e(n) 
and (delayed) tap input x(n-k). 

In effect, 

 e xh(n 1) h(n) R (k)µ+ = +               
                                                    (4.5) 

In the LMS algorithmic approximation, Rex(.) is replaced 
by its instantaneous value i.e. error times tap input vector 

( ) ( )e n x n k−  

∴ h(n 1) h(n) e(n)x(n k)µ
−−

+ = + −                    (4.6) 

Equation (4.6) is the LMS weight update equation; clearly 
the approximation of replacing the actual curve between ξ 
(n+1) and ξ(n) by the slope between these two values, will be 
better the smaller the µ(in principle). In practice because of the 
random nature of x(.)

−
 and e(.), this principle suffers consider 

blurring.  

V. RESULTS 
As it is mentioned in section 4.1 coverage and span these 

two are important parameters in online prediction of task. The 
idle system should have coverage of 95% with minimum span.  

 Here we  have defined span in terms of accuracy in 
prediction. If our prediction is having percentage mean error 
performance of 1% only than we can define span  

 Average confidence Interval = Span = [ tlb,tub] 
where    tlb= predicted time – [percentage mean     
                      error . predicted time] 
     tub= predicted time + [percentage  
                       mean error . predicted time]  
Coverage is the fraction of tasks which complete with their 

predicted confidence intervals. So we can also define coverage 
in terms of percentage mean error. In fact 

If our normal predictor is having percentage mean error of 
1-2 % and we define the span as mentioned above than its’ 
coverage will be merely 100%. This is the most desirable 
condition in online prediction of running time of task.  

Here we have tried to achieve merely 100% coverage using 
LMS Estimator. For simulation of LMS Estimator, we have 
used a database shown in figure 2. Figure 3 shows the error 
performance of LMS Estimator. From the results it is clear that 
after convergence error in prediction is very low almost less 
than 0.5 %, where as mean of the percentage error is only 
0.2442 % .  So, using LMS Estimator we can predict he 
running time of task with less than 1% percentage prediction 
error . Now if we define confidence interval as above than 
coverage will be almost 100%. For the given case length of the 
confidence interval is only 0.4884% of the running time. If we 
provide the calculated confidence interval than more than 99% 
of the tasks will be having their running time lying into the 
confidence interval. So, coverage is more than 99% with very 
small confidence interval. Small Interval and more than 99% 
coverage is the most desirable feature to select resources most 
efficiently in desktop grid networks.    

 
Figure 2. Database of almost 1500 tasks with their running time. 
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Figure 3. Error Performance Of LMS Estimator 

VI. CONCLUSION 
 

 Thus in this paper we provided the solutions to implement 
multi purpose grids in enterprises as well in institutes. Desktop 
Grids are more famous for the applications with very large 
numbers of tasks. But Desktop Grids have failed to effectively 
deliver the results when used for small applications. Here in 
this paper we have proposed a self-managing resource 
selection scheme based on adaptive prediction which would 
help Desktop Grids to deliver better results when used for 
small applications and the data streaming capability will help 
the small grids to combine and deliver results for larger 
applications. The important concept of online prediction of 
running time of task is implemented using Adaptive Schemes. 
As results show the success to get merely 100% coverage is 
achieved using adaptive schemes.This will be a very useful 
concept for applications like audio-video streaming where 
coverage must be of minimum 95%. 
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VIII. APPENDIX 

A. Database Used 
Section A.1.1 is the small spread database which has been 

mainly used for the implementation of the various algorithms.  

1) Small Spread Database Used 
dataSS = x = [1.6280 1.6282 1.6280 1.6275 1.6270 1.6272 

1.6272 1.6270 1.6270 1.6267 1.6265 1.6265 1.6268 1.6265 
1.6266 1.6264 1.6260 1.6260 1.6258 1.6253 1.6258 1.6261 
1.6260 1.6256 1.6256 1.6260 1.6260 1.6262 1.6258 1.6258 
1.6255 1.6256 1.6262 1.6267 1.6270 1.6269 1.6265 1.6267 
1.6265 1.6270 1.6275 1.6275 1.6270 1.6280 1.6285 1.6285 
1.6290 1.6285 1.6287 1.6288 1.6288 1.6287 1.6287 1.6285 
1.6287 1.6287 1.6295 1.6286 1.6285 1.6281 1.6283 1.6286 
1.6288 1.6290 1.6265 1.6267 1.6272 1.6268 1.6260 1.6264 
1.6270 1.6265 1.6265 1.6262 1.6265 1.6260 1.6265 1.6258 
1.6258 1.6260 1.6257 1.6249 1.6248 1.6245 1.6249 1.6245 
1.6250 1.6258 1.6253 1.6252 1.6255 1.6257 1.6248 1.6255 
1.6250 1.6251 1.6248 1.6248 1.6259 1.6263 1.6263 1.6260 
1.6262 1.6260 1.62654 1.6265 1.6265 1.6265 1.6265 1.6270 
1.6275 1.6280 1.6279 1.6275 1.6280 1.6285 1.6285 1.6280 
1.6280 1.6263 1.6280 1.6281 1.6287 1.6278 1.6278 1.6280 
1.6283 1.6280 1.6283 1.6286 1.6265 1.6273 1.6276 1.6272 
1.6266 1.6268 1.6271 1.6269 1.6267 1.6266 1.6266 1.6263 
1.6265 1.6263 1.6263 1.6264 1.6260 1.6255 1.6256 1.6252 
1.6251 1.6253 1.6257 1.6259 1.6255 1.6254 1.6258 1.6259 
1.6254 1.6256 1.6253 1.6253 1.6253 1.6253 1.6255 1.6262 
1.6267 1.6265 1.6263 1.6265 1.6264 1.6267 1.6270 1.6270 
1.6268 1.6275 1.6280 1.6283 1.6285 1.6281 1.6284 1.6287 
1.6286 1.6283 1.6284 1.6279 1.6283 1.6285 1.6290 1.6283 
1.6282 1.6281 1.6283]; 
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