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Abstract: The number and the size of spatial databases, e.g. for geomarketing, traffic control or 
environmental studies, are rapidly growing which results in an increasing need for spatial data mining. 
Spatial data sets are at the heart of a variety of scientific and engineering domains, from astrophysics to 
computational fluid dynamics to robotics. Rapid advances in simulation and experimentation in these 
domains are yielding an increasing reliance on efficient and effective spatial reasoning algorithms. New 
applications in other domains, such as aerodynamics, scientific computing, RFID, sensor and actuator 
networks, and structural bioinformatics, are additionally being cast in terms of mining and reasoning about 
spatial data. These developments demand effective cross-fertilization and consolidation of computational 
techniques from qualitative reasoning, data mining, scientific computing, and statistical methodology, in 
the context of significant applications.
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1 Introduction
The computerization of many business 

and government transactions and the advances in 
scientific data collection tools provide us with a 
huge and continuously increasing amount of 
data. This explosive growth of databases has far 
outpaced the human ability to interpret this data, 
creating an urgent need for new techniques and 
tools that support the human in transforming the 
data into useful information and knowledge. 
Knowledge discovery in databases 
(KDD)[1][4][8] has been defined as the non-
trivial process of discovering valid, novel, and 
potentially useful, and ultimately understandable 
patterns from data . The process of KDD is 
interactive and iterative, involving several steps. 
In particular, data mining is the step of applying 
appropriate algorithms that, under acceptable 
computational efficiency limitations, produce a 
particular enumeration of patterns over the data.

Data mining is the automated process of 
discovering patterns in data. The purpose is to 
find correlation among different datasets that are 
unexpected. Supermarket chains are a prime 
example of entities that use data mining 

techniques in an effort to increase sales by trying 
to find correlations in consumer buying 
practices. In a hypothetical situation, a data 
miner might find a pattern that people who 
purchase high-end cat food also are strong 
purchasers of floor wax. As a result of this 
analysis, the supermarket might then place the 
pet food products in the same aisle as the 
household cleaners in an attempt to induce 
higher sales.
On-Line Transaction Processing (OLTP) is the 
tradional model for enterprise data processing. In 
OLTP, the emphasis is on transactions involving 
the input, update, and retrieval of data. On-Line 
Analytical Processing (OLAP) applications 
query the database to collate, summarize, and 
analyze its contents. Data mining augments the 
OLAP process by applying artificial intelligence 
and machine learning techniques to find 
previously unknown or undiscovered 
relationships in the data. This is different from 
analytical techniques in which the goal is to 
prove or disprove an existing hypothesis. 
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2 Spatial mining
Spatial data are data that have a spatial 

or location component. Spatial data can be 
viewed as data about objects that themselves are 
located in a physical space.

Spatial mining is data mining as applied 
to spatial databases or spatial data. Some of the 
applications for spatial data mining are in the 
areas of GIS systems, geology, environmental 
science, resource management, agriculture, 
medicine, and robotics[1][2][3][7].

2.1 Spatial data overview:
Accessing spatial data can be more 

complicated than accessing nonspatial data. 
There are specialized operations and data 
structures used to access spatial data.
Spatial data structures

A common technique used to represent 
a spatial object is by the smallest rectangle that 
completely contains that object, minimum 
bounding rectangle(MBR).

One benefit of the spatial data structures 
is that they cluster objects based on location. 
This implies that objects that are close together 
in the n-dimensional space tend to be stored 
close together in the data structure and on disk. 
Thus, these structures could be used to reduce 
the processing overhead of an algorithm by 
limiting its search space.

2.1.1 Quad tree

Fig: A Quad tree

A quad tree represents a spatial object by a 
hierarchical decomposition of the space  into 
quadrants(cells). This process is shown by using 
the triangle. Triangle is shown as three shaded 
squares. The area has been divided into two 
layers of quadrant divisions. The number of 
layers needed depends on the precision desired.   
Each level in the quad tree corresponds to one of 
the hierarchical layers. Each of the four 
quadrants at that layer has a related pointer to a 
node at the next level if any of the lowest level 
quadrants are shaded[15].

2.1.2 R-tree

Fig: R-tree
One approach to indexing spatial data 

represented as MBRs is an R-tree. Each 
successive layer in the tree identifies smaller 
rectangles. In an R-tree, cells may actually 
overlap. An object is represented by an MBR 
that is located within one cell. A cell is the MBR 
that contains the related set of objects (or MBRs)
at a lower level of decomposition. Each level of 
decomposition is identified with a layer in the 
tree. As spatial objects are added to the R-tree, it 
is created and maintained by algorithms similar 
to those found for B-trees. The size of the tree is 
related to the number of objects.

Algorithms to perform spatial operators 
using an R-tree are relatively straightforward. 
Suppose we wished to find all objects that 
intersected with a given object. Representing the 
query object as an MBR, we can search the 
upper levels of the R-tree to find only those cells 
that intersect the MBR query.Those subtrees that 
do not intersect the query MBR can be 
discarded[11].

2.1.3 k-D Tree

Fig: k-D-tree
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A k-D tree was designed to index 
multiattribute data, not necessarily spatial data. 
The  k-D tree is a variation of a binary search 
tree where each level in the tree is used to index 
one of the attributes. We illustrate the use of the 
k-D tree assuming a two-dimensional space. 
Each node in the tree represents a division of the 
space into two subsets based on the division 
point used.

Each lowest level cell has only one 
object in it. The division are not made using 
MBRs. Initially, the entire region is viewed as 
one cell and thus the root of the k-D tree. The 
area is divided first along one dimension until 
each cell has only one object in it[15].

2.2 Data Input
The data inputs of spatial data mining are more 
complex than the inputs of classical data mining 
because they include extended objects such as 
points, lines, and polygons. The data inputs of 
spatial data mining have two distinct types of 
attributes: non-spatial attribute and spatial 
attribute. Non-spatial attributes are used to 
characterize non-spatial features of objects, such 
as name, population, and unemployment rate for 
a city. They are the same as the attributes used in 
the data inputs of classical data mining. Spatial 
attributes are used to define the spatial location 
and extent of spatial objects. The spatial 
attributes of a spatial object most often include 
information related to spatial locations, e.g., 
longitude, latitude and elevation, as well as 
shape. Relationships among non-spatial objects 
are explicit in data inputs, e.g., arithmetic 
relation, ordering, is instance of, subclass of, and 
membership of. In contrast, relationships among 
spatial objects are often implicit, such as overlap, 
intersect, and behind. One possible way to deal 
with implicit spatial relationships is to 
materialize the relationships into traditional data 
input columns and then apply classical data 
mining techniques. However, the materialization 
can result in loss of information. Another way to 
capture implicit spatial relationships is to 
develop models or techniques to incorporate 
spatial information into the spatial data mining 
process.

2.3 Statistical Foundation
Statistical models are often used to represent 
observations in terms of random variables. These 
models can then be used for estimation, 
description, and prediction based on probability 
theory. Spatial data can be thought of as 
resulting from observations on the stochastic 

process Z(s): s 2 D, where s is a spatial location 
and D is possibly a random set in a spatial 
framework. Here we present three spatial 
statistical problems one might encounter: point 
process, lattice, and geostatistics[16].
2.3.1 Point process: 
A point process is a model for the spatial 
distribution of the points in a point pattern. 
Several natural processes can be modeled as 
spatial point patterns, e.g., positions of trees in a 
forest and locations of bird habitats in a wetland. 
Spatial point patterns can be broadly grouped 
into random or non-random processes. 
2.3.2 Lattice:
A lattice is a model for a gridded space in a 
spatial framework. Here the lattice refers to a 
countable collection of regular or irregular 
spatial sites related to each other via a 
neighborhood relationship. Several spatial 
statistical analyses, e.g., the spatial 
autoregressive model and Markov random fields, 
can be applied on lattice data.
2.3.3 Geostatistics:
Geostatistics deals with the analysis of spatial 
continuity and weak stationarity, which is an 
inherent characteristics of spatial data sets. 
Geostatistics provides a set of statistics tools, 
such as kriging  to the interpolation of attributes 
at unsampled locations.

3. Output Patterns
There are four important output patterns for 
spatial data mining: predictive models, spatial 
outliers, spatial co-location rules, and spatial 
clustering[16].
3.1 Predictive Models

The prediction of events occurring at 
particular geographic locations is very important 
in several application domains. Examples of 
problems which require location prediction 
include crime analysis, cellular networking, and 
natural disasters such as fires, floods, droughts, 
vegetation diseases, and earthquakes. In this 
section we provide two spatial data mining 
techniques for predicting locations, namely the 
Spatial Autoregressive Model (SAR) and 
Markov Random Fields (MRF).
3.2 Spatial Outliers

Outliers have been informally defined 
as observations in a dataset which appear to be 
inconsistent with the remainder of that set of data 
or which deviate much from other observations. 
The identification of global outliers can lead to 
the discovery of unexpected knowledge and has 
a number of practical applications in areas such 
as credit card fraud, athlete performance 
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analysis, voting irregularity, and severe weather 
prediction. 

Detecting spatial outliers is useful 
inmany applications of geographic information 
systems and spatial databases, including 
transportation, ecology, public safety, public 
health, climatology, and location-based services.
A spatial outlier is a spatially referenced object 
whose nonspatial attribute values differ 
significantly from those of other spatially 
referenced objects in its spatial neighborhood. 
Informally, a spatial outlier is a local instability  
or a spatially referenced object whose non-
spatial attributes are extreme relative to its 
neighbors, even though the attributes may not be 
significantly different from the entire 
population[16]. 

3.3 Spatial Co-location Rules
Boolean spatial features are geographic 

object types which are either present or absent at 
different locations in a two dimensional or three 
dimensional metric space, e.g., the surface of the 
Earth. Examples of boolean spatial features 
include plant species, animal species, road types, 
cancers, crime, and business types. 

Co-location patterns represent the 
subsets of the boolean spatial features whose 
instances are often located in close geographic 
proximity. Examples include symbiotic species, 
e.g., Nile crocodile and Egyptian plover in 
ecology, and frontage roads and highways in 
metropolitan road maps.
3.4 Spatial Clustering

Spatial clustering is a process of 
grouping a set of spatial objects into clusters so 
that objects within a cluster have high similarity 
in comparison to one another, but are dissimilar 
to objects in other clusters. For example, 
clustering is used to determine the hot spots in 
crime analysis and disease tracking. Hot spot 
analysis is the process of finding unusually dense 
event clusters across time and space. Many 
criminal justice agencies are exploring the 
benefits provided by computer technologies to 
identify crime hot spots in order to take 
preventive strategies such as deploying 
saturation patrols in hot spot areas. 

Spatial clustering can be applied to 
group similar spatial objects together; the 
implicit assumption is that patterns in space tend 
to be grouped rather than randomly located. 
However, the statistical significance of spatial 
clusters should be measured by testing the 
assumption in the data. The test is critical before
proceeding with any serious clustering analysis.

4. Algorithms in Spatial Data mining
4.1 Spatial Classification Algorithms
Spatial classification problems are used to 
partition sets of spatial objects. Spatial objects 
could be classified using nonspatial attributes, 
spatial predicates(spatial attributes), or spatial 
and nonspatial attributes. Concept hierarchies 
may be used, as may sampling. Generalization 
and progressive refinement techniques may be 
used to improve efficiency[1].
4.1.1 ID3 Extension
The concept of neighborhood graphs has been 
applied to perform classification of spatial 
objects using ID3 extension[3].
4.1.2 Spatial Decision Tree
one spatial classification technique builds 
decision trees using a two-step process similar to 
that used for association rules. The basis of the 
approach is that spatial objects can be described 
based on objects close to them. A description of 
the classes is then assumed to be based on an 
aggregation of the most relevant predicates for 
objects nearby[14].
4.2. Spatial Clustering Algorithms
Spatial clustering algorithms must be able to 
work efficiently with large multidimensional 
databases. In addition , they should be able to 
detect clusters of different shapes. Other 
desirable features for spatial clustering are that 
the clusters found should be independent of the 
order in which the points in the space are 
examined and that the clusters should not be 
impacted by outliers.
4.2.1 CLARANS Extensions
The main memory assumption of CLARANS is 
totally unacceptable for large spatial databases. 
Two approaches to improve the performance of 
CLARANS by taking advantage of spatial 
indexing structures have been proposed[13].
The first approach uses a type of sampling based 
on the structure of an R*-tree. To ensure the 
quality of the sampling, the R*-tree is used to 
guarantee that objects from all areas of the space 
are examined. The second technique improves on 
the manner in which the cost for a prominent 
change is calculated. Instead of examining the 
entire databases, only the objects in the two 
affected clusters must be examined. A region 
query can be used to retrieve the needed objects.
4.2.2 SD(CLARANS)
Spatial dominant CLARANS[SD(CLARANS)] 
assumes that items to be clustered contain both 
spatial and nonspatial components. It first 
clusters the spatial components using 
CLARANS and then examines the nonspatial 
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attributes within each cluster to derive a 
description of that cluster.
4.2.3 DBCLASD
DBCLASD (Distribution Based Clustering of 
Large Spatial Databases) assumes that the items 
within a clusters are uniformly distributed and 
that points outside the cluster probably do not 
satisfy this restriction. Based on this assumption, 
the algorithm attempts to identify the distribution 
satisfied by the distances between nearest 
neighbors.
4.2.4 BANG
The BANG approach uses a grid structure 
similar to k-D tree. The structure adapts to the 
distribution  of the items so that more dense 
areas have a larger number of smaller grids, 
while less dense areas have a few large ones.
4.2.5 WaveCluster
WaveCluster can be find arbitrarily shaped 
clusters and does not need to know the desired 
number of clusters. A wavelet transform is used 
as a filter to determine the frequency content of 
the signal. 

A wavelet transform of a spatial object 
decomposes it into a hierarchy of spatial images. 
They can be used to scale an image to different 
sizes.
4.2.6 Approximation
Approximation can be used to identify the 
characteristics  of clusters. This is done by 
determining the features that are close to the 
clusters. Clusters can be distinguished based on 
features unique to them or that are common 
across several clusters.
 5. Thematic Maps
The thematic maps illustrate spatial objects by 
showing the distribution of attributes or themes. 
Each map shows one (or more)  of the thematic 
attributes. These attributes describe the important 
nonspatial features of the associated spatial 
object. For example, one thematic map may 
show elevation, average rainfall, and average 
temperature. Raster based thematic maps 
represent the spatial data by relating pixels to 
attribute values of the data. For example, in a 
map showing elevation, the color of the pixel can 
be associated with the elevation of that location. 
A vector based themativ map represents objects 
by a geometric structure. In addition, the object 
then has the thematic attribute values[15][16].

 6. Spatial Database Systems (SDBS) 
These are database systems for the 

management of spatial data. To find implicit 
regularities, rules or patterns hidden in large 
spatial databases, e.g. for geo-marketing, traffic 

control or environmental studies, spatial data 
mining algorithms are very important. Attribute-
oriented induction can be performed by using 
(spatial) concept hierarchies to discover 
relationships between spatial and non-spatial 
attributes. 

In the clustering algorithm CLARANS, 
which groups neighboring objects automatically 
without a spatial concept hierarchy, is combined 
with attribute-oriented induction on non-spatial 
attributes introduces spatial association rules 
which describe associations between objects 
based on different spatial neighborhood 
relations. There exist algorithms to detect 
properties of clusters using reference maps and 
thematic maps. For instance, a cluster may be 
explained by the existence of certain neighboring 
objects which may “cause” the existence of the 
cluster. For spatial classification it is important 
that class membership of a database object is not 
only determined by its non-spatial attributes but 
also by the attributes of objects in its 
neighborhood. 

In spatial trend analysis, patterns of 
change of some non-spatial attribute(s) in the 
neighborhood of some database object are 
determined. We argue that data mining 
algorithms should be integrated with existing 
DBMS, i.e. they should not run on separate files 
but they should run directly on a database. Thus, 
redundant storage and potential inconsistencies 
can be avoided. Furthermore, the query 
operations provided by a DBMS may be used, 
for example, to select subsets relevant for data 
mining or to support the user in evaluating the 
discovered patterns. In this paper, we introduce a 
set of database primitives for mining in spatial 
databases. These primitives are sufficient to 
express most of the algorithms for spatial data 
mining from the literature; in particular they can 
express the algorithms reviewed above. We 
present techniques for efficiently supporting 
these primitives by a DBMS[1][14][16].

7. Future research
A further research topic includes the Comparison 
of classical data mining techniques with spatial 
data mining techniques. It is possible to 
materialize the implicit relationships into 
traditional data input columns and then apply 
classical data mining techniques.

Another way to deal with implicit 
relationships is to use specialized spatial data 
mining techniques, e.g., the spatial auto 
regression and co-location mining. New research 
is needed to compare the two sets of approaches 
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in effectiveness and computational efficiency. 
Modeling semantically rich spatial properties, 
such as topology Statistical interpretation models 
for spatial patterns. 

Spatial connectivity and other complex 
spatial topological relationships in spatial 
networks are difficult to model using the 
continuity matrix. Research is needed to evaluate 
the value of enriching the continuity matrix 
beyond the neighborhood relationship[16].

Effective visualization of spatial 
relationships improving computational 
efficiency. To facilitate the visualization of 
spatial relationships, research is needed on ways 
to represent both spatial and non-spatial features.

8. Conclusions
Extracting interesting and useful patterns from 
spatial datasets is more difficult than extracting 
the corresponding patterns from traditional 
numeric and categorical data due to the 
complexity of spatial data types, spatial 
relationships, and spatial autocorrelation. This 
chapter focuses on the unique features that 
distinguish spatial data mining from classical 
data mining.

 Future research includes optimized 
implementation of database primitives in the 
server of a spatial DBMS and a comparison with 
current implementation. Filters can be used for 
restricting the search to neighborhood paths 
“leading away” from a starting object. 
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