

Abstract-- Web services foster functionality of current web to

service oriented architecture. Additionally, the semantic web ser-

vice architecture supports better service invocation by agents

because the underlying ontologies are extensible. A middle agent

(broker) simplifies the interaction of service providers and service

requester, especially in the case that an atomic web service cannot

fulfill user's need. It composes a desired value-added service and

orchestrates the execution of bundled sub-processes. It is inevita-

ble that several constitutive web services may fail during the ex-

ecution and become unavailable. In this paper, we propose re-

placement of a sequence of semantic web services in lieu of old

composition subgraph which includes perished web service(s). We

try to perform finding foreseeable replacing graphs, and their

compatible alternative subgraphs and ranking of them before

exploitation of composite web service. Furthermore, we illumi-

nate an approach for resolving functional differences between old

and new subgraphs.

Index Terms— Composite Semantic Web Service, Failure Re-

covery, Web Service Subgraph Replacement

I. INTRODUCTION

ERVICE Oriented Architecture is an architectural para-

digm for components of a system and interactions or pat-

terns between them. In this architecture, a service is a contrac-

tually defined behavior that can be implemented and provided

by a component for use by another component.

Services are described by descriptors. The service descrip-

tion consists of the technical parameters, constraints and poli-

cies that define the terms to invoke the service. Each service

should include a service definition in a standardized format.

This enables applications and human actors to examine the

service description and determine issues such as, what the ser-

vice does, how they may bind to it, and what security protocols

(if any) must be used with it. A service must communicate its

service description in an accessible manner to potential con-

sumers. It does so by using one of several advertising metho-

dologies [1].

The Semantic Web is an extension of the current web in

which information is given well-defined meaning, better enabl-

Hadi Saboohi and Amineh Amini are with the Department of Computer

Engineering, Karaj Islamic Azad University, Karaj, Tehran, Iran (e-mail:

saboohi@kiau.ac.ir and aamini@kiau.ac.ir).

Hassan Abolhassani is with the Department of Computer Engineering,

Sharif University of Technology, Tehran, Iran (e-mail: abolhassa-

ni@sharif.edu).

ing computers and people to work in cooperation [2]. When

looking towards the future of web services, it is predicted that

a breakthrough will come when the software agents start using

the web services rather than the users who need to browse,

discover and compose the services. Providing the semantic of

web services give the software agents the capability to discov-

er and compose web services. The Semantic Web enables

greater access not only to content of the Web but also to ser-

vices on the Web [3].

In a service oriented environment, to achieve user’s goals it

is needed to find appropriate semantic web service(s). Fur-

thermore, if Service Registry does not include desired web

service, Composer component, like one defined in [4], com-

poses existing web services and exploits it as a composite web

service to satisfy user’s goal. A composite web service is a

combination of smaller services to provide value-added ser-

vices that cannot be achieved by a single service. Of which

some of this smaller service can be composite services as well.

Executing of a composite semantic web service includes

execution of all bundled services. So, a composite service is

more suspectable to failure than an atomic service.

During the execution of a composite web service, if one

component service fails, or becomes unavailable, a mechanism

is needed to ensure that the running process is not interrupted

and the failed service is quickly and efficiently replaced. Fur-

thermore, considering transactions, if composite web service

fails at a point, well-executed services of this structure must

undo [5] and roll-back to starting state.

When a composite web service fails, we may try to com-

plete its execution by attempting to re-execute failed constitu-

ent web service(s) as the first solution. If re-execution attempts

are unsuccessful, we apply a failure recovery strategy by re-

placing a sequence of web services containing this jammed

service(s) to complete the execution.

This paper is organized as follows: The next section sum-

marizes related works on this topic. Section III outlines our

method for replacing a sequence of web services and their

replacement patterns. Two instance scenarios in section IV

shows the functionality of the method. Finally, we provide

conclusions and ideas for future research.

II. RELATED WORKS

Mechanisms are being developed to recover from failure

automatically. One approach for recovering from faults is sug-

Failure Recovery of Composite Semantic Web

Services by Subgraph Replacement Strategy
Hadi Saboohi, Amineh Amini and Hassan Abolhassani

S

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 9

gested in [6]. It proposes a novel taxonomy that captures the

possible failures that can arise in web service composition and

classifies the faults that may cause them. The taxonomy covers

some faults that can be caused by a variety of observable fail-

ures in a system’s normal operation. An important usage of

taxonomy is identifying the faults that can be excluded when a

failure occurs.

A team-oriented model introduced in [7] has the ability to

coordinate autonomous components in face of a failure. That

research examined how team-work can be used to provide

both forward and backward error recovery as well as efficient

failure recovery in composite web services.

From a different approach, an exception resolving method

based on discovering replacement components that are func-

tionally equivalent, taking also into account criteria for qua-

litative substitutability is proposed in [8]. This solution also

introduces a framework called Service Relevance and Re-

placement Framework which undertakes exception handling.

In [9], authors presented two algorithms to solve the prob-

lem of failing or overloading of a component during the execu-

tion of an autonomic process. The first algorithm uses a back-

up path approach so that the predecessor of a failed service

may quickly switch to a predefined backup path. The second

algorithm uses a replacement path approach to re-construct a

new process by skipping the failed service.

A solution offered in [10], employ a pre-processor that en-

hances Business Process Execution Language scenarios with

code for intercepting faults and invoke alternate web services.

Identification of same skilled alternatives is based on both

functional and qualitative attributes.

In this paper, we are not interested in monitoring and de-

tecting failures like most researches do. Instead we are more

interested in how to recover from a composite web service

failure. Related works mentioned above replace or skip a sin-

gle web service when a failure happens. On the other hand, we

suggest replacing a sequence of web services to recover the

failure.

III. FAILURE RECOVERY METHOD

A. Method Description

In a service oriented architecture, processes are done by in-

vocation and execution of web services. Composing atomic

(and other composed) web services is used when an appropri-

ate web service to satisfy user’s goal is not exists. Web service

composition does not involve the physical integration of all

components: The basic components that participate in the

composition remain separated from the composite web service.

Fig. 1 [4] suggests a service brokering architecture. As

shown in the figure, a service broker places between service

providers and requester as a middle agent. Service requester

sends its request to the broker. Matchmaker searches Service

Registry using Ontology Manager and Ontology Cache to find

nearest web service regarding degree of similarity to the re-

quest. If no similar web service found, Composer tries to com-

pose a new value-added service and sends the result to Mat-

chmaker. Composite web services information caches in

Composed Services Cache. Executor interacts with Service

Providers and sends required information for them and rece-

ives the result(s). Adapter adapts results with user’s need and

sends them to Service Requester [4].

Fig. 1. Service Broker [4]

The broker orchestrates the execution of bundled sub-

processes. However, as business processes are typically long-

lasting transactions, it is inevitable that several constitutive

web services may fail during the execution and become un-

available. So, all aspects of executions should be considered to

achieve user's goal and rectify the problem situation. Executor

component of the broker undertakes inability to succeed and

struggles to hinder failure of software system. Complete ex-

ecution of composite web service need execution of all consti-

tutive web services. In database system concepts, transactions

are used to ensure that integrity and consistency of databases.

Transactionality, in particular the atomicity, consistency,

isolation, and durability (ACID) represent a prevalent ap-

proach for solving reliability issues in distributed computing.

ACID transactions are usually implemented using transaction

monitors or component platforms. Support for ACID transac-

tions requires coupling through the transactional environment,

thus limiting interoperability and flexibility. Another require-

ment for ACID transactions implementation is resource lock-

ing for the duration of the transaction, which requires guaran-

teed short execution time of services. Longer transaction time

usually leads to worsening of the overall throughput of trans-

actional resources. ACID transactions, while perfectly appro-

priate for objects and components, are usually too restrictive

for services [11]. Components of composed web service may

use transactions internally.

The notion of compensating transactions offers a way to

undo an action if a process or user cancels it. With compensat-

ing transactions, each method exposes an undo operation that a

transaction coordinator can invoke if necessary [12].

In general, a composite web service can be modeled as a di-

rected graph in which web services are nodes and their inputs

and outputs are edges. Our approach in modeling and mapping

composite web services to a directed acyclic graph is similar

to [9]. However, in our research we use a simple sequential

graph which is defined below.

Service Broker

S
e
r
v

ic
e
 R

e
q

u
e
st

e
r

Service

Registry

Concepts

Registry

Ontology

Cache

Composed

Services

Cache

Registry

Manager

Ontology

Manager

Composer

Adapter

Matchmaker

Executor

Kernel

S
e
r
v

ic
e
 P

r
o

v
id

e
r
s

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 10

Definition 1: A S-Graph (Sequential Graph) is a directed,

planar, acyclic, linear graph with one start and one end

nodes. Each node is a web service and has input degree and

output degree of one except start and end nodes. The order

(number of nodes) of graph is one bigger than its size (number

of edges). 1)()(1 GEGVorGG

Execution of each web service depends on execution of on-

ly one other web service, which means web services are ex-

ecuted one after the other.

Fig. 2. Composite Web Service (A sample S-Graph)

A composite web service structure is as shown in Fig. 2.

Problem Definition: In a composite semantic web service

structure, execution of whole process depends on well-

execution of all sub-processes. Executor component of used

architecture (Fig. 1) orchestrates the execution task. Web ser-

vices as other software system components are error-prone.

So, the Executor should react if a failure occurred in execution

of any of the constitutive web services(s). Failure recovery is a

better solution in compare with halting the software system.

One possible approach to conquer the failure is to replace a

sequence of web services containing failed service. Any re-

placement strategy in this area is responsible for the follow-

ings:

 Finding best substitution alternative among candi-

dates (if many).

 Managing differences between old and new ser-

vice(s).

In our method, if a failure occurred during execution of a

composite web service, we replace the failed web service with

a “same skilled” [8] one, and if there is no “same skilled” web

service, a subgraph of web services including this failed one

can be replaced to continue execution of composite web ser-

vice.

The process of finding replacement includes two steps,

which both executed offline so replacement speed improves.

 1) Step 1: Subgraph Calculation and Alternative Search

We assume that the structure of composite web service is

available in Composed Services Cache (Fig. 1). From that,

first, we calculate all possible subgraphs of composite web

service. Number of subgraphs for those as in Definition 1 is:

)1(
2

)1(

nn
CountgraphsSub

For example, a set of subgraphs of the sample S-Graph in

Fig. 2 are as: {A}, {Si}, {B}, {A, Si}, {Si, B}, {A, Si, B}

Then, we search for replacement alternatives of these sub-

graphs which are compatible to the original one. (Here, by

compatibility we mean, the alternative has both functional and

non-functional attributes so it is compatible by one of Re-

placement Patterns of next section). It should be mentioned

that discovered replacement alternatives may have different

number of constructive services than the original subgraph.

Achieving the desired outcome at an accelerated pace in the

following step 2, we utilize an indexing method for list of web

services in current step.

 2) Step 2: Ranking Alternatives

In step 1’s result table, each web service of composite web

service may exist in more than one subgraph. For example Si

in figure 2, is in four subsets of subgraphs ({Si}, {A,Si},

{Si,B}, {A,Si,B}). Furthermore, for each subgraph, several

alternatives may exist. So, it is probable to have many re-

placement subgraph alternatives for a subgraph containing Si

web service.

In this step, all replacement subgraphs of a web service are

grouped and ranked by a linear combination of five criteria as

follows:

)2(21

21

sDifferenceNewNew

UndoUndoRank

CostLength

CostCount

This measure depends on number of web services need to

be compensated in the original graph (UndoCount), Undo cost of

the original subgraph (UndoCost), Number of web services in

new subgraph (NewLength), Execution cost of replacing new

subgraph (NewCost) and functional and non-functional Differ-

ences between the original and replacing new subgraph. These

five criteria are combined with different weights specified by

α1, α2, β1, β2 and δ. These weight values are experimentally

determined.

In each group, best ranked alternative subgraph, would be

the replacement selection if the web service of that group fails.

 3) Replacement

During execution, if a web service like Si in Fig. 2 fails, we

execute it repeatedly until successful execution or re-execution

attempts reaches maximum retry count or valid time exceeds.

Maximum retry count and time are specified by web service

provider. If execution doesn’t succeed, we replace a subgraph

of web services based on step 2. Furthermore, total time for

failed web service re-execution, replacement of new subgraph,

running of it and other remaining web services should not ex-

ceed the specified valid execution time of composite web ser-

vice.

Topmost ranked replacement option of the failed web ser-

vice is easy to reach, using result table of step 2. In replace-

ment subgraph, well-executed web services before the failed

web service should be compensated. So, we undo them, and

then we send required requests (if any) which are specified in

I, P
A

Si B
O, E

OA, EA

ISi, PSi

OSi, ESi

IB, PB

A Si B
O, E OA, EA ISi, PSi OSi,E

Si

IB, PB

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 11

the following Replacement Patterns section to provide new

requirements. After that, old subgraph is substituted with the

new one. Finally, web services in new subgraph are executed

to continue composite web service execution.

B. Replacement Patterns

We proposed subgraph replacement for failure recovery of

a composite web service. The subgraph which will be replaced

with a new subgraph may have functional and non-functional

differences. Non-functional or qualitative differences include

response time, availability, reliability, cost, encryption, reputa-

tion and authentication. Functional attributes of web services

are Inputs (I), Preconditions (P), Outputs (O) and Effects (E).

Different kinds of functional differences between new sub-

graph (new), and old subgraph containing failed web service

(failed) are shown in table I.

We consider qualitative attribute differences such as execu-

tion cost between new and failed in ranking alternatives.

If failed and new have same functional attributes, for exam-

ple another provider created a similar web service(s) or com-

poser generated an analogous composite one, replacement has

no side effect on overall structure.

As shown in table I, if there is a difference in one of func-

tional attributes, in almost half of the cases, replacement task

is feasible, while in others replacement possibility depends on

response value of indicated requirement requests.

Additionally, sometimes we mark the new composite struc-

ture as a non-optimized composite web service due to creation

of unused output(s) or effect(s), or unnecessary input(s) or

precondition(s). This sign which has done in Composed Ser-

vices Cache component (of used architecture), will be used for

future need for this composite web service. This indication is

also applicable for reliability checking of the old composite

web service.

Differences in more than one of functional attributes ex-

plored above are imaginable. It means that failed and new can

have several differences in their attributes. If failed and new

have multiple differences, we will do all (union aggregation

of) required tasks, and after receiving responses taking into

account minimum changes to composite web service, we can

decide the new is appropriate or not. Furthermore, if at least

one of multiple differences show that old composite web ser-

vice is non-optimized, we (mark it and) no longer use it as an

optimized one.

IV. INSTANCE SCENARIOS

These example scenarios are provided to clarify the func-

tion of above method.

A. Conference Registration

Imagine you need a semantic web service to register an in-

ternational foreign conference and you want to attend there.

Contacted Service Broker, after searching the information of

registered services in Service Registry, finds out that it doesn’t

have any such services. So it asks its Composer component to

check whether it is possible to integrate existing services for

creating a new service which can respond to the request. The

Composer component detects that by integrating some atomic

services it can do the required job. The execution plan sent to

the Executor component by the Composer is shown in Fig. 3.

Composite semantic web service consists of

1. Conference registration fees payment (P)

2. Registration in conference (R)

3. Get a Visa (V)

4. Two-way airline ticket buying (T)

5. Hotel reservation (H)

Fig. 3. Conference Registration Composite Semantic Web Service

Total execution cost of this composite web service is 9

units. The first three ones cost 1 unit and the others, 3 units per

TABLE I

REPLACEMENT PATTERNS

failed and new Differences

Required Task before Execution of new

Web Services and After Compensation of

executed ones in failed

Mark new

Composite

Web Service as

non-optimized

Is new

Appropriate?

Inputs Preconditions Outputs Effects

- - - - None - Yes

- Pnew Pfailed - - None * Yes

- Pfailed Pnew - - Prepare new preconditions - Maybe

- - - Enew Efailed Inspect if it is executable without old effects - Maybe

- - - Efailed Enew None * Yes

Inew Ifailed - - - None * Yes

Ifailed Inew - - - Request new inputs - Maybe

- - OnewOfailed - Inspect if it is executable without old outputs - Maybe

- - OfailedOnew - None * Yes

Ok
P R V T H

Credit Card Payment Code

Person

Invitation Ok

Date1, Date2

From Date,

To Date

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 12

each web service.

All subgraphs of PRVTH graph are calculated (shown in

table II).

TABLE II

SCENARIO A, PRVTH COMPOSITE SEMANTIC WEB SERVICE SUBGRAPHS

All subgraphs for Instance Scenario PRVTH graph
{H} {T} {V} {R} {P}

 {TH} {VT} {RV} {PR}

 {VTH} {RVT} {PRV}

 {RVTH} {PRVT}

 {PRVTH}

Number of subgraphs according to (1) is as below.

15
2

6*5
CountgraphsSub

For each of these subgraphs, possible replacement sub-

graphs are specified in table III. Some of these replacements

are atomic web services and others are composite ones.
TABLE III

REPLACEMENT ALTERNATIVES FOR ORIGINAL SUBGRAPHS OF SCENARIO A

Original

Subgraph

Original

Subgraph

Execution Cost

Replacement

Subgraph

New Subgraph

Execution Cost

T 3 T1T2 4

TH 6 Tour 8

PR 2 R’ 3

RV 2 V’ 3

PRV 3 A 5

Groups of replacement subgraph alternatives for each feas-

ible failing web service are ranked (Table IV).

During execution time of composite web service PRVTH, if

one of its five web services fails, best ranked replacement sub-

graph is specified in advance. So, using proposed method, it

can be replaced.

TABLE IV

REPLACEMENTS RANKING FOR SCENARIO A

Failed

Web

Service

failed new UndoCount NewCost Rank

P PR R’ 0 3 1

P PRV A 0 5 2

R RV V’ 0 3 1

R PR R’ 1 3 2

R PRV A 1 5 3

V RV V’ 1 3 1

V PRV A 2 5 2

T T T1T2 0 4 1

T TH Tour 0 8 2

H TH Tour 1 8 1

Table IV is ranked based on UndoCount and NewCost.

B. Physical Therapy Planning

Saba wants to schedule a series of physical therapy sessions

for her father’s neck pain as his primary care physician sug-

gested. Her handheld agent requests the broker to do the fol-

lowings: First, retrieve details of the recommended therapy.

Next, look up the list of therapists maintained by Health Insur-

ance Company and check which of them are located near her

father’s house with acceptable reputation. At last, match avail-

able appointment time with him.

Service Broker says no atomic web service in Service Regi-

stry is able to do this job. So, Composer component composes

some atomic and composite services to create a new service

which can fulfill user’s requirements. Composition structure is

shown in Fig. 4.

Fig. 4. Physical Therapy Planning Composite Semantic Web Service

These services will be used in that new composite semantic

web service:

1. Retrieve recommended therapy service (Y), costs

1 unit

2. Health insurance company therapists list service

(L), costs 2 units

3. Neighbor therapists and reputation checker com-

posite service (NC), costs totally 6 units

4. Appointment time matcher service (M), costs 3

units

After calculation of all 10 subgraphs and finding their al-

ternatives, table V are generated.

TABLE V

REPLACEMENT ALTERNATIVES FOR ORIGINAL SUBGRAPHS OF SCENARIO B

Original

Subgraph

Original

Subgraph

Execution Cost

Replacement

Subgraph

New Subgraph

Execution Cost

Y 1 Y1 2

Y 1 Y2 3

NC 6 N1C 9

LNC 8 Z 12

LNC 8 LN1C 11

TABLE VI

REPLACEMENTS RANKING FOR SCENARIO B

Failed

Web

Service

failed new UndoCount NewCost Rank

Y Y Y1 0 2 1

Y Y Y2 0 3 2

L LNC LN1C 0 11 1

L LNC Z 0 12 2

NC NC N1C 0 9 1

NC LNC LN1C 1 11 2

NC LNC Z 1 12 3

M M - - - ?

Y L NC M
Patient

Doctor

Therapy

Insurance Co.

Therapists

Calendar

Therapist Appointment

Address

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 13

Table VI shows the rankings of possible alternatives for

subgraphs. This table shows that if service M fails, there is no

replacement for it. So, by failing M service, executor compo-

nent must compensate executed services (YLNC sequence

from last to first, if no other failures happened before that) and

then sends an error message to the requester. In this composite

semantic web service structure, NC is a composite one itself. If

service C in this smaller composite service fails and Service

Registry contains an alternative for C named C1, there are two

options. First, executor can compensate N and execute Z ser-

vice instead. Second, executor can replace C1 instead of C and

continue the execution process. Failure recovery method de-

scribed above can be extended through contained services and

used recursively in sub-composite services in the structure.

V. CONCLUSION AND FUTURE WORKS

This paper presented a strategy to alleviate failure of soft-

ware systems consisting composite semantic web services. It

proposed a failure recovery method using subgraph replace-

ment of web services containing a failed web service. This

failure recovery method uses both forward and backward me-

chanisms as followings: First, re-execution of failed web ser-

vice and second, execution of an alternative subgraph of web

services instead of a sequence of services containing failed

web service (after compensation of executed ones).

In our method, composite semantic web service is consi-

dered to be a simple graph defined as S-Graph but proposed

steps are of)(2nO because the most time-consuming section

is the calculation of all subgraphs and finding their compatible

alternatives. Future works include using heuristic algorithms to

decrease number of subgraphs, and extend this method for all

composition graphs of semantic web services. Implementation,

calculation of ranking criteria weights and evaluation of the

method is underway.

VI. REFERENCES

[1] D. Nickull. (2005). Service Oriented Architecture white paper, Adobe

Systems Incorporated, San Jose, CA, USA. [Online]. Available:

http://www.adobe.com/enterprise/pdfs/Services_Oriented_Architecture_

from_Adobe.pdf

[2] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic Web", Scien-

tific American, vol. 284, no. 5, pp. 34-43, May 2001.

[3] Dogac, A., M. Eichelberg, L. Finlay, A. Koumpis, B. Kunac, and M.

Boniface, "Review of the State of the Art Semantic Web and Web Ser-

vice Semantics", Software R&D Center, Middle East Tech. Univ., Tur-

key, Apr. 2004.

[4] Y. Ganjisaffar and H. Abolhassani, "Towards a Framework for Broker-

ing Semantic Web Services" Int. Journal of Computers and Their Ap-

plications (IJCA), 2008, To Appear.

[5] M-C. Gaudel. "Toward Undoing in Composite Web Services," In Archi-

tecting Dependable Systems III, vol. 3549 of LNCS, pp. 59-68, 2005.

[6] K.S. M. Chan, J. Bishop, J. Steyn, L. Baresi and S. Guinea, "A Fault

Taxonomy for Web Service Composition", 3rd Int. Workshop on Eng.

Service-Oriented Apps. At 5th Int. Conf. on Service Oriented Compu-

ting (ICSOC'07), Springer LNCS, Vienna, Austria, Sep. 2007.

[7] Y. Y. Chok, "Team-oriented Model for Composite Web Services Failure

Recovery", Honours Programme of the School of Computer Science and

Software Eng., Univ. of Western Australia, 2005.

[8] K. Christos, V. Costas, G. Panayiotis, "Towards Dynamic, Relevance-

Driven Exception Resolution in Composite Web Services", 4th Int.

Workshop on SOA & Web Services Best Practices, Portland, Oregon,

USA at OOPSLA, 2006.

[9] T. Yu and K. J. Lin, "Adaptive algorithms for Finding Replacement

Services in Autonomic Distributed Business Processes." in Proc. 2005

of the 7th Int. Symposium on Autonomous Decentralized Systems

(ISADS2005), Chengdu, China.

[10] K. Christos, V. Costas and G. Panayiotis, "Enhancing BPEL scenarios

with Dynamic Relevance-Based Exception Handling," in Proc. 2007

IEEE Int. Conf. on Web Services (ICWS).

[11] B. Lublinsky. (2007, Jan.). Defining SOA as an architectural style. IBM

developerWorks, USA. [Online]. Available:

http://www.ibm.com/developerworks/architecture/library/ar-soastyle/

[12] C. Peltz, "Web Services Orchestration and Choreography," Computer,

vol. 36, no. 10, pp. 46-52, Oct. 2003.

VII. BIOGRAPHIES

 Hadi Saboohi was born in Shiraz, Iran on January

25, 1978. He received his M.Sc. on Computer Engi-

neering, Software from the Najafabad Islamic Azad

University of Iran with a thesis on Intelligent Con-

tent Management Systems. His areas of academic

research include Semantic Web, Information Re-

trieval and Data Integration.

His employment experience included the Iranian

Research Organization for Science and Technology

and Delaram Pardazeshgar Company developing

high-level software systems. He is now a faculty member of Karaj Islamic

Azad University, Computer Engineering Department.

Amineh Amini was born in Mashhad, Iran on Au-

gust 29, 1978. She received her M.Sc. on Computer

Engineering, Software from Najafabad Islamic Azad

University of Iran with a thesis on Information Inte-

gration in Distributed Systems. Her areas of academ-

ic research include Semantic Web and Data Integra-

tion.

Her employment experience included university

lecturer in some of Islamic Azad University and

University of Applied Science and Technology

branches. She is now a faculty member of Karaj Islamic Azad University,

Computer Engineering Department.

Hassan Abolhassani was born in Isfahan, Iran on

July 10, 1965. He received his PhD from Saitama

University of Japan with a thesis on Automatic

Software Design focusing on Learning from Human

Designers. His areas of academic research include

Software Automation, Semantic Web researches,

Web and Data Mining.

He worked as Senior Technologist providing

software based solutions for top-level clients in

Japan when he was with Xist-Interactive (Razorfish

Japan), until the end of September 2004, when he joined Sharif University of

Technology as an assistant professor.

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 4, 14

