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Abstract--An image is often corrupted by noise in its 

acquisition and transmission.  Hence, noise reduction is a 
required step for any sophisticated image processing algorithm. 
Denoising or noise reduction has been permanent research topic 
for engineers and scientists and one reason for it is the lack of a 
single technique, which is able to achieve denoising for a wide 
class of images.  Though, traditional linear noise removal 
techniques like Wiener filtering have been existing for a long 
time for their simplicity and are able to achieve significant noise 
removal when the variance of noise is low, they cause blurring 
and smoothing of the sharp edges of the image . This paper 
includes two implementations of curvelet transform, curvelet 
transform via wrapping and curvelet transform via USFFT using 
two filtering methods such as hard threshold and partial 
reconstruction. 
 

Index Terms-- Curvelets,, FFT, Filtering, Thresholding rules, 
USFFT, Wavelets 

I.  INTRODUCTION 
The need for efficient image restoration methods has 

grown with the massive production of digital images and 
movies of all kinds, often taken in poor conditions. No matter 
how good a camera is, an image improvement is always 
desirable to extend its range of action. Two main limitations 
in image accuracy are blur and noise. Blur is intrinsic to image 
acquisition systems, as digital images have finite number of 
samples and must satisfy the Shannon Nyquist sampling 
condition. The second main image perturbation is noise. 

 Image denoising is an important image processing task, 
both as a process itself, and as a component in other 
processes. Many ways to denoise an image or a set of data 
exist. The main properties of a good image denoising model 
are that it will remove noise while preserving edges. 
Traditionally, linear models have been used. One common 
approach is to use a Gaussian filter, or equivalently solve the 
heat-equation with the noisy image as input-data, i.e. a linear, 
2nd order PDE-model. For some purposes this kind of 
denoising is adequate. One major advantage of linear noise 
removal models is the speed. But a drawback of the linear 
models is that they are not able to preserve edges in a good 
manner: edges, which are recognized as discontinuities in the 
image, are smeared out. Nonlinear models on the other hand  
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can handle edges in a much better way than linear models can. 

Hence, in recent years there has been a fair amount of 
research on non-linear noise removal techniques and 
prominent among them are the wavelet based denoising 
techniques. The disadvantage of Wavelet transform is many 
wavelet coefficients are needed to account for edges i.e. 
singularities along lines or curves which results into relatively 
high mean squared error (MSE).  A new approach to image 
denoising is based on a recently introduced family of 
transforms e.g. curvelet transform which have been proposed 
as alternatives to wavelet representation of image data. Unlike 
wavelet, curvelet transforms accurately represent smooth 
functions using only a few nonzero coefficients. 

The aim of this paper is to analyze the importance of the 
newly developed multiscale representation system, namely, 
the curvelet transform in terms of its two digital 
implementations i.e. transformation based on unequally-
spaced fast fourier transforms (USFFT) and transformation 
based on wrapping of specially selected fourier samples and to 
find the best one for denoising a wide variety of gray scale 
images. 

The curvelet transform was developed in last few years in 
an attempt to overcome inherent limitations of traditional 
multiscale representations such as wavelets. The curvelet 
transform is a multiscale pyramid with many directions and 
positions at each length scale, and needle-shaped element at 
fine scales. Curvelets have useful geometric features that set 
them apart from wavelets and the likes. For instance, curvelets 
obey a parabolic scaling relation which says that at scale 2-j, 
each element has an envelope which is aligned along a ‘ridge’ 
of length 2-j/2 and width 2-j. 

II.  IMAGE DENOISING 
Image denoising can be formally defined as removal of 

noise present in the image while preserving the important and 
sharp features of the image. In acquiring, transmitting or 
processing a digital image for example, the noise induced 
degradation may be dependent or independent of data which 
is shown in fig. 1, where noisy image includes the original 
image and independent identically distributed noise process 
(n) with variance σ2. 
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Fig. 1. Block diagram of Image Denoising Process 
 

The goal of image denoising is to find an estimate of noise-
free image based on the knowledge of noise [7].  A more 
precise explanation of the curvelet based denoising procedure 
can be given as follows. Curvelet transform is applied to a 
noisy image. The image I has an image function u(x,y) as a 
union of modified copies of itself. The net result is that target 
u is approximated by the attractive fixed point of curvelet 
transform T that performs the thresholding operation on the 
image function.  

III.  CURVELET TRANSFORM 
The new ridgelet [5] and curvelet transforms [1] [2] [3] [4] 

were developed over several years in an attempt to break an 
inherent limit plaguing wavelet denoising of images. This 
limit  arises from the well-known and frequently depicted fact 
that the two-dimensional (2-D) wavelet transform of images 
exhibits large wavelet coefficients even at fine scales, all 
along the important edges in the image, so that in a map of the 
large wavelet coefficients one sees the edges of the images 
repeated at scale after scale. While this effect is visually 
interesting, it means that many wavelet coefficients are 
required in order to reconstruct the edges in an image 
properly. With so many coefficients to estimate, denoising 
faces certain difficulties. There is, owing to well-known 
statistical principles, an imposing tradeoff between parsimony 
and accuracy which even in the best balancing leads to a 
relatively high mean squared error (MSE). While this tradeoff 
is intrinsic to wavelet methods (and also to Fourier and many 
other standard methods), there exist, on theoretical grounds, 
better denoising schemes for recovering images which are 
smooth away from edges. For example, asymptotic arguments 
show that, in a certain continuum model of treating noisy 
images with formal noise parameter є, for recovering an 
image which is C2 smooth away from edges, the ideal MSE 
scales like є4/3 whereas the MSE achievable by wavelet 
methods scales only like є. To approach this ideal MSE, one 
should develop new expansions which accurately represent 
smooth functions using only a few nonzero coefficients. 
Since, so few coefficients are required either for the smooth 
parts or the edge parts, the balance between parsimony and 
accuracy will be much more favorable and a lower MSE 
results. The ridgelet transform and curvelet transform were 
developed explicitly to show that this combined sparsity in 
representation of both smooth functions and edges is possible. 

The continuous ridgelet transform provides a sparse 
representation of both smooth functions and of perfectly 
straight edges. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Curvelet transform flowgraph 
 

The original curvelet transform uses a preprocessing step 
involving a special partitioning of phase-space followed by 
the ridgelet transform, which is applied, to blocks of data that 
are well localized in space and frequency. The curvelet 
transform opens up the possibility to analyse an image with 
different block sizes, but with a single transform. The idea is 
to first decompose the image into a set of wavelet bands, and 
to analyze each band by a ridgelet transform. The block size 
can be changed at each scale level.  

As shown in fig. 2 the curvelet transform is made up of a 
chain of steps. It uses à trous wavelet transform algorithm to 
decompose an n by n image I into J+1 subband arrays of size 
n x n. The figure illustrates the decomposition of the original 
image into subbands followed by the spatial partitioning of 
each subband. The ridgelet transform is then applied to each 
block. 

The curvelet transform is mathematically valid and has a 
very promising potential in traditional application areas for 
wavelet-like ideas such as image processing, data analysis, 
and scientific computing. To realize this potential thoroughly 
and deploy this technology to a wide range of problems one 
would need a fast and accurate discrete curvelet transform 
operating on digital data. Original construction of curvelet 
transform is redundant and hence slow.  

Two new fast digital implementations of a curvelet 
transform [4] i.e. transformation based on unequally-spaced 
fast fourier transforms (USFFT) and transformation based on 
wrapping of specially selected fourier samples are simpler, 
faster and less redundant than existing proposals and can be 
used for denoising. The two implementations essentially differ 
by the choice of spatial grid used to translate curvelets at each 
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scale and angle. Both digital transformations return a table of 
digital curvelet coefficients indexed by a scale parameter, an 
orientation parameter and a spatial location parameter. 

A.   Digital Curvelet Transform via Unequispaced FFT’s The 
digital coronization suggests Cartesian curvelets of the form   
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where b takes on the discrete values b = (k1 · 2−j , k2·2−j/2). 
The goal is to find a digital analog of the coefficients now 
given by 
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Suppose for simplicity that θl = 0. To numerically evaluate 
above with discrete data, one would just  (1) take the 2D FFT 
of the object f and obtain ˆf,  (2) multiply ˆf with the window 
˜Uj, and (3)take the inverse Fourier transform on the 
appropriate Cartesian grid b =  (k1 · 2−j , k2 · 2−j/2). The 
difficulty here is that for θl ≠ 0, it is desired to evaluate the 
inverse discrete Fourier transform (DFT) on the nonstandard 
sheared grid S-T

θl (k1 · 2−j, k2· 2−j/2) and unfortunately, the 
classical FFT algorithm does not apply. To recover the 
convenient rectangular grid, however, one can pass the 
shearing operation to ˆf and rewrite the above equation as 
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Suppose now that f[t1, t2], 0 <= t1, t2 < n  be the Cartesian 
array and let ˆ f[n1, n2] denote its 2D discrete Fourier 
transform 
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Where 2/,2/ 21 nnnn <≤−                                         
Which here and below, view as samples 
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From the interpolating trigonometric polynomial, also 
denoted ˆ f, and defined by 
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the FDCT via USFFT simply evaluates 
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B.  Digital Curvelet Transform via Wrapping 
The ‘wrapping’ approach assumes the same digital 

coronization as in Section A, but makes a different, somewhat 
simpler choice of spatial grid to translate curvelets at each 
scale and angle.  

The previous approach showed that it was possible to 
design curvelets with anisotropic spatial spacing of about n/2j 
in one direction and n/2j/2 in the other, this approach would 
seem to require a naive regular rectangular grid with side-
length about n/2j in both directions. In other words, one would 

need to compute on the order of 22j coefficients per scale and 
angle as opposed, to only about 23j/2 in the USFFT-based 
implementation. By looking at fine scale curvelets such that 2j 
≈ n, this approach would require O(n2.5) storage versus O(n2) 
for the USFFT version. 

It is possible, however, to downsample the naive grid, and 
obtain for each scale and angle a subgrid which has the same 
cardinality as that in use in the USFFT implementation. The 
idea is to periodize the frequency samples.  

As before, let Pj,l be a parallelepiped containing the support 
of discrete-time localizing window ˜Uj,l[n1, n2]. Suppose that 
at each scale j, there exist two constants L1,j ~ 2j and L2,j ~ 2j/2  

such that, for every orientation θl , one can tile the two-
dimensional plane with translates of Pj,l  by multiples of L1,j in 
the horizontal direction and L2,j in the vertical direction. 
Equipped with this notion, then define the wrapping W ˜ Uj,l 
of the array ˜ Uj,l around the origin by 

[ ] [ ]2,1,
~
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with (n1,n2) є Pj,l . Hence, the wrapping transformation is a 
simple re-indexing of the array. Given (n1, n2) є Pj,l, the 
correspondence between the wrapped and the original indices 
is one-to-one. For those angles in the range θ є (−π/4, 3π/4), 
the wrapping is similar, after exchanging the role of the 
coordinate axes. The 2D inverse FFT of the wrapped array 
therefore reads 
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Where 2/,2/ 21 nnnn −==  

IV.  FILTERING 

Here digital transforms for removing noise from image 
data are applied. If noisy data of the form  

( ) jiji ZjifX ,, , σ+= ,           is given 

Where f is the image to be recovered and z is the white 
noise, i.e. z i,j  ~ N(0,1). There are two filtering methods used 
to denoise the noisy image i.e. Hard Thresholding and Partial 
Reconstruction.. Unlike FFT's or FWT's,  discrete curvelet 
transform is not norm-preserving and, therefore, the variance 
of the noisy curvelet coefficients will depend on the curvelet 
index λ. Letting F denote the discrete curvelet transform 
matrix, we have Fz ~ N(0, FFT ). Because the computation of 
FFT is prohibitively expensive, an approximate value σ2λ¸ of 
the individual variances using norm of each individual 
curvelet was calculated.  

Let yλ  be the noisy curvelet coefficients (y = Fx). Let’s use 
the following hard-thresholding rule for estimating the 
unknown curvelet coefficients: 

λλ YY =
~

   if  
~

/ λλ σσ KY ≥                  (10) 

0
~

=λY      if  
~

/ λλ σσ KY <               (11) 
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In this experiment, a scale-dependent value for k was 
chosen, where k = 4 for the first scale (j = 1) while k = 3 for 
the others (j > 1).  

In partial reconstruction the image was reconstructed using 
few largest coefficients. And the remaining coefficients were 
set to zero. Important thing in this method is to select the 
percentage value of largest coefficients, which will be used 
for reconstruction of image. By trial and error the value 
selected is 6% and the threshold is then set. 

Rule for estimating the unknown curvelet coefficients was 
used as follows: 

λλ YY =
~

    if         TY ≥λ                  (12) 

0
~

=λY     if   TY <λ                  (13) 

V.  RESULTS AND DISCUSSION  

In this paper four methods have been implemented for 
image denoising. Two fast curvelet transform methods have 
been combined with two filtering methods.  
METHOD 1:  Digital Curvelet Transform via Wrapping using 
Hard  thresholding.  
METHOD 2:  Digital Curvelet Transform via Wrapping using 
Partial Reconstruction.  
METHOD 3:  Digital  Curvelet Transform   via  USFFT using 
Hard thresholding.  
METHOD 4:  Digital Curvelet Transform    via USFFT using 
Partial reconstruction   

For this experiment 10 input images of 512 by 512 were 
used and 4 input images of 256 by 256 were used. Method 1 
and method 3 gave better MSE and PSNR. This is because 
both the methods use same filtering method i.e. hard 
thresholding. In hard thresholding all coefficients of image 
obtained by curvelet transform are considered and respective 
thresholded values are used for reconstruction of image. As 
size of the image reduces, quality of image reconstructed 
becomes poor. Percentage reduction in MSE by each method 
is greater than that of σ = 10 but still less than the percentage 
reduction in MSE for 512 by 512 images. Table I and II 
shows MSE and PSNR obtained by each method for 512 by 
512 images with standard deviation as 10. Results obtained by 
method 1 and method 3 are better than method 2 and 4. It has 
been observed that as curvelet transform with hard 
thresholding gives better results than curvelet transform with 
partial reconstruction. 

                        
    (a)             (b) 

      
(c)                                            (d) 

     
(e)                  (f) 

 
Fig. 3. Results obtained by four methods for noisy splash image with σ = 10 
and image size 512 x 512. (a) Original splash (b) noisy splash with MSE = 
98.76 and PSNR = 28.18 (c) Method 1 reconstruction with MSE = 22.74 and 
PSNR = 34.56 (d) Method 2 reconstruction with MSE = 41.18 and PSNR = 
31.98 (e) Method 3 reconstruction with MSE = 23.07 and PSNR = 34.49 (f) 
Method 4 reconstruction with MSE = 43.34 and PSNR = 31.76 
 

TABLE I 
COMPARISON OF MSE IN NOISY IMAGE WITH FOUR METHODS FOR 
512 X 512 IMAGES AND NOISE ADDED IN INPUT IMAGE (STANDARD 

DEVIATION = 10). 
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TABLE II 

COMPARISON OF PSNR IN NOISY IMAGE WITH FOUR METHODS 
FOR 512 X 512 IMAGES AND NOISE ADDED IN INPUT IMAGE 

(STANDARD DEVIATION = 10). 
 

 

VI.  CONCLUSION AND FUTURE WORK 
Although both the transforms have low running times, the 

USFFT transform is somewhat slower; this is due to the 
interpolation step in forward transform and to the CG iteration 
in the inverse transform. Hence the conclusion is that for any 
image size, curvelet transform based on wrapping using hard 
thresholding provides faster and better way to denoise the 
noisy image. 

In future image quality of reconstructed images obtained 
by these strategies can be improved by varying filtering 
methods. Noise other than Gaussian white noise e.g. salt and 
pepper noise can also be introduced in the images used for 
denoising. These denoising techniques can be applied to color 
images also.  
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