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Abstract-- Content Based Image Retrieval (CBIR) system using 

features obtained by sub-band decomposition of Contourlet 
transform (CT) is proposed in this work. Energy and Standard 
deviation (SD)  computed in each sub-band are used as features 
of each image in the database. Unique properties of CT, viz., 
directionality and anisotropy are explored to improve the 
retrieval efficiency. Improved result in terms of retrieval 
efficiency is observed over recent work based on Gabor - Zernike 
features based CBIR system. The results are also compared with 
our recent work using Contourlet transform based CBIR system, 
wherein standard deviation computed in each sub-band is used 
as feature.  Computational complexity of this work is compared 
with Gabor-Zernike features based CBIR system and also with 
CT based system, wherein standard deviation is used as feature.  
 

Index Terms—CBIR, Contourlet transform, Feature 
extraction,  Image retrieval, Similarity measures. 

I.  INTRODUCTION 
ONTENT Based Image Retrieval (CBIR) finds 

applications in internet, advertising, medicine, crime 
detection, entertainment, and digital libraries. High retrieval 
efficiency and less computational complexity are the desired 
characteristics of CBIR system and they are the key objectives 
in the design of CBIR system [1]. However, designing of 
CBIR system with these objectives becomes difficult as the 
size of image database increases. CBIR based on color, 
texture, shape, and edge information are available in the 
literature [2]-[4]. Features of an image should have a strong 
relationship with semantic meaning of the image.  CBIR 
system retrieves the relevant images from the image database 
for the given query image, by comparing the features of the 
query image and images in the database. Relevant images are  
retrieved according to minimum distance or maximum 
similarity [5] between feature of query image and each image  
in the image database.     CBIR systems can be designed based 
on several features, viz., color, texture, shape and edge 
information.  In [6] color distribution and quantization is used  
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for color image retrieval. Texture contains important 
information about the structural arrangement of surfaces and 
their relationship to the surroundings. Various techniques are 
developed for texture analysis [7], [8]. Most of the textural 
features are obtained from the application of a local operator, 
statistical analysis, or measurement in transform domain. 
Shape features are computed assuming that images contain 
only one shape.  Shape features include:  modal matching , 
histograms of edge directions [9], and matching of shape 
components such as corners, line segments or circular arcs 
[10]. 

     Recently, Fu et al., [11] have proposed CBIR system 
based on features obtained by Gabor - Zernike features 
(GF+ZM). Gabor wavelets are used for texture feature 
extraction, and Zernike moments are used for shape feature 
extraction. The algorithm is tested on Georgia Tech face 
database [12].     

     Spatial and spectral features of the images can be 
explored for image retrieval in CBIR systems. Due to the local 
nature, it is difficult to detect edge and texture orientations 
using spatial methods [13]. Spectral methods based on 
multiscale directional transforms, viz., wavelets have fixed 
number of directions. They are also inefficient to capture 
edges and smooth contours in natural images. Discrete 
wavelet transforms [14] are inherently non-supportive to 
directionality and anisotropy.  The Contourlet Transform (CT) 
is a directional transform capable of capturing contours and 
fine details in images. The contourlet expansion is composed 
of basis functions oriented at variety of directions in multiple 
scales with flexible aspect ratios. With this rich set of basis 
functions, the contourlets can effectively capture smooth 
contours (Edge and Texture orientations) that are the 
dominant features in images in the database. 

     In our earlier work,  standard deviation (SD) computed 
in each directional sub-band of contourlet decomposed  image 
is used as feature [15] and compared the results with Gabor –
Zernike features based CBIR system. 

     In the proposed method, an image is represented in the 
contourlet transform domain. Standard deviation and  energy 
parameters computed in each directional sub-band of the CT 
decomposed image is used to obtain feature vector to 
represent every image in the image database. The basic 
assumption of using energy as a feature is energy distribution 
in frequency domain identifies a texture [16].Besides 
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providing high retrieval performance energy based approaches  
partly supported by psychological studies of visual cortex 
[17]. Contourlet transform can effectively represent 
information in than wavelet transform for the images having 
more directional information with smooth contours [18] due 
to its properties, viz., directionality and anisotropy.  Hence, 
the proposed method based on CT is producing improved 
performance in terms of retrieval efficiency and 
computational complexity over Gabor-Zernike features based 
CBIR system. Computation complexity is increasing over our 
earlier work [15], due to increase in size of the feature vector, 
improved performance is observed in terms of retrieval 
efficiency. 

     This paper is organized as follows: In section II, 
discrete contourlet transform and its advantages over discrete 
wavelet transform are reviewed. Proposed CBIR system using 
normalized energy and standard deviation calculated in each 
sub-band of CT, is discussed in section III.  Experimental 
results are presented in section IV. Concluding remarks and 
future directions are given in section  V. 

II.  DISCRETE CONTOURLET TRANSFORM 
     Multiscale and time-frequency localization of an image 

is offered by wavelets. But, wavelets are not effective in 
representing the images with smooth contours in different 
directions. Contourlet Transform (CT) addresses this problem 
by providing two additional properties viz., directionality and 
anisotropy [19] made it a powerful tool for CBIR.  

     Contourlet transform is a multiscale and directional 
image representation that uses first a wavelet like structure for 
edge detection, and then a local directional transform for 
contour segment detection. A double filter bank structure of 
the contourlet is shown in Fig. 1. In the double filter bank 
structure, Laplacian Pyramid (LP) [20], [21] is used to capture 
the point discontinuities, and then followed by a Directional 
Filter Bank (DFB) [22], which is used to link these point 
discontinuities into linear structures. The contourlets have 
elongated supports at various scales, directions and aspect 
ratios. This allows contourlets to efficiently approximate a 
smooth contour at multiple resolutions.   Contourlet transform 
is simple and flexible, but it introduces  redundancy  (up to 
33%) due to LP stage.  

 
Fig. 1.  Double Filter Bank Decomposition of  Contourlet Transform. 

A.  Laplacian Pyramid Decomposition 
     Laplacian Pyramid is used to obtain multiscale 

decomposition.  LP  decomposition  at  each level  generates a  
down sampled low pass version of the original image and 
difference between the original and the prediction, results in a 
band pass image. The LP decomposition is shown in Fig. 2.  
In the LP decomposition process  H, G are one dimensional 
low pass analysis and synthesis filters, M is the sampling 
matrix. Here, the band pass image obtained in LP 
decomposition is then processed by the DFB  stage.  

 
Fig. 2.  LP Decomposition  (One Level) 

In LP decomposition of an image, ),( jif  represent the 

original image, its low pass filtered version is ),( jif lo and 

the prediction is  ),(ˆ jif . The prediction error is given by  

 ),( jiPe   = ),( jif  -  ),(ˆ jif                                            (1)            

The directional decomposition is performed on ),( jiPe   as it 
is largely decorrelated and requires less number of bits 
than ),( jif . 

 In equation (1), ),( jiPe  represents a band pass image. 
Further decomposition can be carried by applying equation (1) 
on ),( jif lo  iteratively to get  
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represents the  number of pyramidal levels. In LP 
reconstruction, the image is obtained by simply adding back 
the difference to the prediction from the coarse image. 

B.  Directional Filter Bank Decomposition      
     DFB is designed to capture the high frequency content 

like smooth contours and directional edges [23]. The DFB is 
implemented by using a k-level binary tree decomposition that 
leads to 2k  directional sub-bands with wedge shaped 
frequency partitioning. But, the DFB used in this work is a 
simplified DFB [24], which is constructed from two building 
blocks. The first one is a two-channel quincunx filter bank 
with fan filters. It divides a 2-D spectrum into two directions, 
horizontal and vertical. The second one is a shearing operator, 
which amounts to the reordering of image pixels. Due to these 
two operations, directional information is preserved. This is 
the desirable characteristic in CBIR system to improve 
retrieval efficiency.  

      Combination of a LP and DFB gives a double filter 
bank structure known as contourlet filter bank.  Band pass 
images from the LP are fed to DFB so that directional 
information can be captured. The scheme can be iterated on 
the coarse image. This combination of LP and DFB stages 
result in a double iterated filter bank structure known as 
contourlet filter bank, which decomposes the given image into 
directional sub-bands at multiple scales.             

III.   CBIR  ARCHITECTURE 
     The objective of the proposed work is to study the use 

of edge and texture orientations as image features in image 
retrieval. The basic architecture of CBIR system is shown in 
Fig. 3. An improved method based on contourlet transform for 
CBIR system is proposed in this work. There are two issues in 
building a CBIR system. 

1. Every image in the image data base is to be   represented 
efficiently by extracting significant features. 

2. Relevant images are to be retrieved using similarity 
measure between query and every image in the image data 
base.  

 
 
 
 
 

     

 

 

 

 (Feat Ext. - Feature Extraction) 

Fig. 3.  CBIR System Architecture 

A.  Proposed Algorithm 
      The steps involved in the proposed CBIR system with 

combined energy and standard deviation features includes 
database processing and resizing, creation and normalization 
of feature database, comparison and image retrieval. Steps of 
the proposed algorithm are as follows.  

■ 1. Decompose each image in the Contourlet domain 

 
    2. Compute the standard  deviation   (SD)  and   energy (E)    
        of  the   CT  decomposed    image  on  each   directional  
         sub-band.   
        Standard deviation  )( kσ  and   Energy  )( KE  of  k th             
        sub-band  are  given as  
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        where,                          
        kW   = Co-efficient of k th   CT  decomposed sub- band 

        kµ    =   Mean value of k th   sub-band 
         M x N   = Size of the CT  decomposed  sub- band 
                        
        The resulting   combined standard deviation with energy           
        feature vector is given as 
 
       =Efσ ]..........[ 321321 nn EEEEσσσσ                    (4) 
        where, n is number of sub-bands 
 
   3.  Normalize the feature vector to the range [0 1] for every      
        image in the database.      
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=                                                       (5) 

        where, 
       ff σµ ,  are the mean and standard  deviation of Efσ . 

        This normalized feature vector  CTf  is used to  create 
         the feature database. 
  4.   Apply query image and calculate the feature  
        vector as given in steps 2 to 5. 
 
  5.   Calculate the similarity using  Manhattan   
        Distance measure 
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       feature vector of query image and     every   image in the   
       database. qf , if  are the normalized   feature vectors  of     

       the query   image and  database  image   respectively. 
 
  6.  Retrieve all relevant images to query image based on   
       minimum ‘Manhattan distance’. 

                                                                                ■  
 A query image may be  any  one  of  the  database   images. 
This query is then processed to compute the feature vector  as 

in equations (4) and (5). The distance 
M
qiD

  (where ‘q’ is   the 
query image  and ‘i’ is an image from database)  is   
computed. The distances  are  then  sorted  in increasing order 
and       the closest sets of images are then retrieved. The top 
‘N’ retrieved images  are  used  for   computing   the   
performance   of   the proposed method. The retrieval 
efficiency is measured by counting the number of matches. 

IV.  EXPERIMENTAL  RESULTS  
  Retrieval   performance in terms of average retrieval rate 

and retrieval time of the proposed CBIR system is tested by 
conducting an experiment on GT face database.  

   

 

  Fig. 4.  Sample images from GT Face database   of five 

different subjects 
 
  GT face database consists of 750 colorful face images 

of size 640x480 with 50 subjects and 15 images per subject. 
These images in the database are considered by allowing for 
strong variation in size, illumination, facial expression, and 
rotation both in the image plane and perpendicular to the  
image plane. In this work, all images in the database are 
converted to gray level images. Some sample images in this 

database are shown in Fig. 4. All the images in the database 
are scaled to a size of 256x256. For creating the feature 
database, each image is decomposed in the contourlet domain. 
The feature vector is computed using equations (2), (3) and 
(4) on each directional sub band of CT decomposed image. 
This feature vector is then normalized to the range  

[0, 1] as given in equation (5). 

A.   Feature Selection 
  Edge and texture orientations are captured by using 

CT decomposition with a 4 – level (0, 2, 3, 4 ) LP 
decomposition. At each level, the number of directional sub-
bands are 3, 4, 8 and 16 respectively. For LP decomposition 
and directional sub-band decomposition ‘pkva’ filters [25] are 
used. Standard deviation  with Energy  vector is used as image 
feature, which is computed on each directional sub-band of 
the CT decomposed image and normalized [26] to range [0 1]. 
These parameters results in a 64-dimentional feature vector . 
This normalized feature vector is used for the creation of the 
feature database. 

 

Fig. 5.  Sample image from GT face  database (Image no. 210) 

 

 

Fig. 6.  CT decomposed image using 4-level LP & ‘pkva’ filter) 
     A sample image from GT Face database (sample image 

210 in the database) and the corresponding CT decomposition 
with a 4-level LP decomposition i.e.(0, 2, 3, 4) are shown in 
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Fig. 5 & 6 respectively. Some of the retrieved results when 10 
images (N=10) in one subject of the image database are 
retrieved are shown in Fig.  7.   

 

 

      

Fig. 7.  Retrieved images with  (image no. 210)  top left image as query image 

B.  Average Retrieval Rate 
      The average retrieval rate for the query image is 

measured by counting the number of images from the same 
category which are found in the top ‘N’ matches [27]. 
Comparative retrieval performance of the proposed CBIR 
system on the GT face database using CT features is shown in 
Table I.  

TABLE I 

AVERAGE RETRIEVAL RATES 

(1, 3, 5, 8, 10 are the top ‘N’ Retrieved Images) 

 
       From Table I, it is observed that the proposed CBIR 
system with SD+Energy features is providing improved 
retrieval performance over Fu et al., method and CT based 
CBIR System with standard deviation features. The 
superiority of the proposed method is also observed in all the 
cases, i.e., when N is considered as 1, 3, 5, 8, 10 (N is the 
number of top retrieved images). Comparative retrieval 
performances in terms of average retrieval rate is shown in 
Fig. 8.  

C.  Retrieval Time 
     Computational complexity for CBIR system (with 

N=10) using different features, i.e. for the GF, ZM, GF+ZM, 
CT with  SD, CT with SD+energy is shown in Table II.   

TABLE II 

AVERAGE RETRIEVAL TIME 

 
 The proposed method is superior in terms of retrieval time 
over GF+ZM based CBIR system. Increased size of the 
feature vector  improves the retrieval time in the proposed 
method when compared to the CBIR system with only 
standard deviation features. Experiments are conducted using 
MATLAB version 7.2.0 with Pentium-4, 3.00 GHz. 
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Fig. 8.  Comparative average retrieval rates.       

  

V.  CONCLUSIONS 
  The performance of the CBIR system is dependent on 

the feature vector that represents the image in the database. 
Important characteristics of contourlet transform viz., 
directionality and anisotropy are explored in this work. 
Normalized energy and standard deviation calculated in each 
sub-band of the CT decomposed image are used as features in 
the feature vector representing the image. Superiority of this 
work is observed in terms of retrieval efficiency & retrieval 
time over Gabor-Zernike features used by Fu et al. The 
retrieval efficiency of the proposed is increased when 
compared with our earlier work [15]. However, the 
computation time of the proposed algorithm increases over 
our earlier work due to the increase in size of feature vector. 
The feature vector of the CT decomposed image varies if the 
database consists of images with different rotations. Hence, a 
CBIR system with rotational invariance is to be explored.  

 
 

 Number of top matches 

Methods 1 3 5 8 10 

GF 100 98.81 96.71 90.27 84.75 
ZM(10) 100 98.66 95.37 88.50 82.71 

GF+ZM(4) 100 98.96 96.88 90.22 85.11 
CT with 

SD  

100 99.99 99.25 98.03 96.78 

CT with 

SD+Energy  

100 99.99 99.76 98.59 97.62 

GF ZM(10) GF+ZM(4) CT(SD) CT(Energy+SD) 

3.24s 4.35s 5.34s 0.846s 1.32s 
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