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Performance evaluation of wavelet filters for Image 
Compression using SPIHT 

Abstract--Embedded Zero tree Wavelet (EZW) coding is a 
very effective and computationally simple technique for 
ima ge compression. This principle is based on partial 
ordering by magnitude with a set partitioning sorting 
algorithm, ordered bit plane transmission, and 
exploitation of self-similarity across different scales of an 
image wavelet transform. Moreover, a new and different 
implementation based on set partitioning in hierarchical 
trees (SPIHT) is presented, which provides even better 
performance than the original EZW. The image coding 
results, calculated from actual file sizes and images 
reconstructed by the decoding algorithm, are either 
comparable to or surpass previous results obtained 
through much more sophisticated and computationally 
complex methods. The results for various wavelets on 
three different images are compared. 
 
Index Terms-- Compression, EZW, SPHIT and  Wavelet.  
 

I.  INTRODUCTION 
HE term data compression refers to the process of 
reducing the amount of data required to represent a given 

quantity of information. In digital image compression, three 
basic data redundancies can be identified and exploited: 
coding redundancy, interpixel redundancy, and psycho visual 
redundancy. Data compression is achieved when one or more 
of these redundancies are reduced or eliminated. 

    
 Over the past several years, the wavelet transform has 

gained widespread acceptance in signal processing in general, 
and in image compression research in particular. In many 
applications wavelet-based schemes (also referred as subband 
coding) outperform other coding schemes like the one based 
on DCT.  

Since there is no need to block the input image and its basis 
functions have variable length, wavelet coding schemes at 
higher compression avoid blocking artifacts. 
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Wavelet-based coding is more robust under transmission and 
decoding errors, and also facilitates progressive transmission 
of images. In addition, they are better matched to the HVS 
characteristics and are suitable for applications where 
scalability and tolerable degradation are important. 
 
A. Embedded Zerotree Wavelet (EZW) Compression  

In octave-band wavelet decomposition, shown in Fig. 11 
(a), each coefficient in the high-pass bands of the wavelet 
transform has four coefficients corresponding to its spatial 
position in the octave band above in frequency. Because of 
this very structure of the decomposition, it probably needed a 
smarter way of encoding its coefficients to achieve better 
compression results. A tree-like data structure to represent the 
coefficients of the octave decomposition was first introduced 
in 1992. 

In1993, Shapiro [1] called this structure zerotree of wavelet 
coefficients, and presented his elegant algorithm for entropy 
encoding called Embedded Zerotree Wavelet (EZW) 
algorithm. The zerotree is based on the hypothesis that if a 
wavelet coefficient at a coarse scale is insignificant with 
respect to a given threshold T, then all wavelet coefficients of 
the same orientation in the same spatial location at a finer 
scales are likely to be insignificant with respect to T. The idea 
is to define a tree of zero symbols which starts at a root which 
is also zero and labeled as end-of-block. Fig.1.1 (a) and 1.1(b) 
shows a similar zerotree structure. Many insignificant 
coefficients at higher frequency subbands (finer resolutions) 
can be discarded, because the tree grows as powers of four. 
The EZW algorithm encodes the tree structure so obtained. 
This results in bits that are generated in order of importance, 
yielding a fully embedded code. The main advantage of this 
encoding is that the encoder can terminate the encoding at any 
point, thereby allowing a target bit rate to be met exactly. 
Similarly, the decoder can also stop decoding at any point 
resulting in the image that would have been produced at the 
rate of the truncated bit stream. The algorithm produces 
excellent results without any pre-stored tables or codebooks, 
training, or prior knowledge of the image source.   
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(a)                                    (b) 

Fig. 1.1(a) Structure of zerotrees, and (b) Scanning order of 
subbands for encoding 
 

Many enhancements have been made to make the EZW 
algorithm more robust and efficient. One very popular and 
improved variation of the EZW is the SPIHT algorithm. 

B. Set Partitioning in Hierarchical Trees (SPIHT)      
Algorithm  

Said and Pearlman [9], offered an alternative explanation 
of the principles of operation of the EZW algorithm to better 
understand the reasons for its excellent performance. 
According to them, partial ordering by magnitude of the 
transformed coefficients with a set partitioning sorting 
algorithm, ordered bitplane transmission of refinement bits, 
and exploitation of self-similarity of the image wavelet 
transform across different scales of an image are the three key 
concepts in EZW. In addition, they offer a new and more 
effective implementation of the modified EZW algorithm 
based on set partitioning in hierarchical trees, and call it the 
SPIHT algorithm. They also presented a scheme for 
progressive transmission of the coefficient values that 
incorporates the concepts of ordering the coefficients by 
magnitude and transmitting the most significant bits first. 
They use a uniform scalar quantizer and claim that the 
ordering information made this simple quantization method 
more efficient than expected. An efficient way to code the 
ordering information is also proposed. According to them, 
results from the SPIHT coding algorithm in most cases 
surpass those obtained from EZQ algorithm. 

II.  WAVELET TRANSFORM (WT) 

A.  Basics of Wavelet Transform  
The wavelet transform circumvents some of the 

disadvantages of the Short Time Fourier Transform (STFT). 
By using wavelet transform it is possible to achieve windows 
of variable sizes.  A better time resolution is obtain with 
smaller window and a better frequency resolution is obtained 
with larger window. The time resolution directly varies with 
window size. In case of STFT frequency resolution varies 
linearly with the reciprocal of window size. However, the 
wavelet transform is not Fourier transform and consequently 
the relationship between window size and frequency is not 
simple. 

 

For example  
                                         

0 0( ) sin 2 sin 2 ( )s t f t f f tπ π= + +�            
                                                                                (2.1) 
For given frequency separation ∆f the wavelet transform 

has a better chance of resolving the two component if fο is 
smaller rather than large. That is rather than ∆f alone, it is 

0/f f�  that matters for resolution of frequency.  This is 
called, “constant Q” or “constant relative bandwidth” 
property.  Generally real world signal encodes meaningful 
information in frequency band whose bandwidth is 
proportional to its absolute centre frequency, which is constant 
Q distribution energy.  Thus, WT is particularly well suited 
for detecting meaningful frequency variation in such real 
world signals. 

 

B.  Continuous wavelet transform (CWT) 
Like STFT the WT can be expressed as the time integrated 

product of a signal s(t) with a set of analyzing basis functions. 
However, the basis functions for the WT are dilated and 
shifted version of the same “mother wavelet”.  The mother 
wavelet can have many different forms, subject to certain 
mathematical constraints described below. This permits the 
WT basis function to take on a greater variety of shapes where 
as the basis functions of the STFT which are restricted to 
windowed sinusoidal oscillations. 

 
The CWT is given by 
                                        *

,( , ) ( ) ( )sW s s t t dtττ ψ= ∫                            

                                                                              (2.2) 

    

1( , ) ( )ts
ss
τψ τ ψ −

=
                                                                       

                                                                               (2.3) 
Where Ψ(s,τ) is mother wavelet with most of the energy in 

concentrated in localized region. The WT W(s,τ) is closely 
related to time – frequency representations. The parameter τ is 
identical to τ in STFT.  The parameter S is called the dilation 
or scale parameter and its reciprocal is similar to frequency. 

Certain restriction on the mother wavelet is required so that 
the original signal can be recovered by the inverse WT. 

WT removes the DC component of the signal. This DC 
component can be added back to the signal after performing 
inverse WT. 

The duration of the wavelet defines its effective window 
width. As the duration of window the scale “s” also varies. 
The WT uses windows of varying size therefore overcome the 
key disadvantages of STFT, which uses a fixed window size. 
In WT variable window size provides different frequency 
resolutions where as STFT gives fixed frequency resolution.  
Information in the low frequency end of the signal is captured 
by basis of large “s” On the other hand for smaller values of 
“s” the basis function are narrower and their energy spectrum 
densities peak at higher frequency with broader lobes and so 
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information of high frequency is capture.  Hence the form of 
time- frequency representation provided by WT is more 
accurately referred to as a “time - scale” representation. 

 
Of course the multiresolution analysis can be extended to 

two dimensions. The straightforward way to do this is to use a 
tensor product of two 1-D multiresolution analyses.  

III.  SET PARTITIONING IN HIERARCHICAL TREES 
(SPIHT) ALGORITHM 

Image compression techniques, especially nonreversible or 
lossy ones, have been known to grow computationally more 
complex as they grow more efficient, confirming the tenets of 
source coding theorems in information theory that a code for a 
(stationary) source approaches optimality in the limit of 
infinite computation (source length). Notwithstanding, the 
image coding technique called Embedded Zero tree Wavelet 
(EZW), introduced by Shapiro, interrupted the simultaneous 
progression of efficiency and complexity. This technique not 
only was competitive in performance with the most complex 
techniques, but was extremely fast in execution and produced 
an embedded bit stream. With an embedded bit stream, the 
reception of code bits can be stopped at any point and the 
image can be decompressed and reconstructed. An alternative 
exposition of the underlying principles of the EZW technique 
was developed, and presented an extension that achieved even 
better results. 

 The EZW technique is based on three concepts: 
 1) Partial ordering of the transformed image elements by 

magnitude, with transmission of order by a subset partitioning 
algorithm that is duplicated at the decoder, 2) ordered bit 
plane transmission of refinement bits, and 3) exploitation of 
the self-similarity of the image wavelet transform across 
different scales. As to be explained, the partial ordering is a 
result of comparison of transform element (coefficient) 
magnitudes to a set of octavely decreasing thresholds. An 
element is significant or insignificant with respect to a given 
threshold, depending on whether or not it exceeds that 
threshold.. The subset partitioning is so effective and the 
significance information so compact that even binary uncoded 
transmission achieves about the same or better performance 
than in these previous works. Moreover, the utilization of 
arithmetic coding increases the peak signal-to-noise ratio 
(PSNR) by 0.3-0.6 dB for the same rate. Execution times are 
also reported to indicate the rapid speed of the encoding and 
decoding algorithms.  

A.  Set partitioning sorting algorithm 
One of the main features of the proposed coding method is 

that the ordering data is not explicitly transmitted. Instead, it is 
based on the fact that the execution path of any algorithm is 
defined by the results of the comparisons on its branching 
points. So, if the encoder and decoder have the same sorting 
algorithm, then the decoder can duplicate the encoder’s 
execution path if it receives the results of the magnitude 
comparisons, and the ordering information can be recovered 

from the execution path. 
One important fact used in the design of the sorting 

algorithm is that we do not need to sort all coefficients. 
Actually, we need an algorithm that simply selects the 

coefficients such that 2n ≤  , || i jc  < 2n+1, with n  
decremented in each pass. 

Given n , if , | 2| n
i jc ≥ then we say that a coefficient is 

significant; otherwise it is called insignificant The sorting 
algorithm divides the set of pixels into partitioning subsets mτ , 
and performs the magnitude test  

 
( )

{ },
,

max 2
m

n

i j
i j

c
τ∈

≥                  (3.1) 

If the decoder receives a “no’’ to that answer (the subset is 

insignificant), then it knows that all coefficients in mτ , are 
insignificant. If the answer is “yes” (the subset is significant), 
then a certain rule shared by the encoder and the decoder is 

used to partition mτ , into new subsets ,m lτ
, and the 

significance test is then applied to the new subsets. This set 
division process continues until the magnitude test is done to 
all single coordinate significant subsets in order to identify 
each significant coefficient. To reduce the number of 
magnitude comparisons (message bits) we define a set-
partitioning rule that uses an expected ordering in the 
hierarchy defined by the sub band pyramid. The objective is to 
create new partitions such that subsets expected to be 
insignificant contain a large number of elements, and subsets 
expected to be significant contain only one element. To make 
clear the relationship between magnitude comparisons and 
message bits, we use the function 

                           ( ) ( )
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                                                                     (3.2) 
                                
to indicate the significance of a set of coordinatesτ . To 

simplify the notation of single pixel sets, we write 

( ){ }( ),nS i j   as ( ),nS i j . 

B.  Spatial orientation trees 
Normally, most of images energy is concentrated in the low 

frequency components. Consequently, the variance decreases 
as we move from the highest to the lowest levels of the 
subband pyramid. Furthermore, it has been observed that there 
is a spatial self-similarity between subbands, and the 
coefficients are expected to be better magnitude-ordered if we 
move downward in the pyramid following the same spatial 
orientation [4]. For instance, large low-activity areas are 
expected to be identified in the highest levels of the pyramid, 
and they are replicated in the lower levels at the same spatial 
locations. 
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A tree structure, called spatial orientation tree, naturally 
defines the spatial relationship on the hierarchical pyramid. 
Fig.3. 1 shows how our spatial orientation tree is defined in a 
pyramid constructed with recursive four-sub band splitting. 
Each node of the tree corresponds to a pixel and is identified 
by the pixel coordinate. Its direct descendants (offspring) 
correspond to the pixels of the same spatial orientation in the 
next finer level of the pyramid. The tree is defined in such a 
way that each node has either no offspring (the leaves) or four 
offspring, which always form a group of 2 x 2 adjacent pixels. 
In Fig.3.1, the arrows are oriented from the parent node to its 
four offspring. The pixels in the highest level of the pyramid 
are the tree roots and are also grouped in 2 x 2 adjacent pixels. 
However, their offspring branching rule is different, and in 
each group, one of them (indicated by the star in Fig.3.1) has 
no descendants. 

The following sets of coordinates are used to present the 
new coding method: 

( , )Ο i j  : Set of coordinates of all off springs of node ( ),i j ; 

( , )D i j : Set of coordinates of all descendents of the 

node ( ),i j ; 

H  : Set of coordinates of all spatial orientation tree roots 
(Nodes in the highest pyramid level); 

( , ) ( , ) ( , )L i j D i j O i j= −  

 
Fig.3. 1 Examples of parent-offspring dependencies in the      
              spatial-orientation tree. 

 

For instance, except at the highest and lowest pyramid 

levels, we have 

( ) ( ) ( ) ( ) ( ){ }, 2,2 , 2,2 1 , 2 1,2 , 2 1,2 1O i j i j i j i j i j= + + + +          

                                                                                 (3.3) 

We use parts of the spatial orientation trees as the 
partitioning subsets in the sorting algorithm. The set 
partitionmg rules are simply the following. 

1. The initial partition is formed with the sets 

( ){ },i j and ( , )D i j  for all ( , )i j H∈  

2. If ( , )D i j is significant, then it is partitioned into 

( , )L i j  plus the four single-element sets with 

( , ) ( , )k l O i j∈  

3. If ( , )L i j is significant, then it is partitioned into 

the four sets ( , )D k l , with ( , ) ( , )k l O i j∈  . 

C. Coding algorithm 

Since the order in which the subsets are tested for 
significance is important, in a practical implementation the 
significance information is stored in three ordered lists, called 
list of insignificant sets (LIS), list of insignificant pixels (LIP), 
and list of significant pixels (LSP). In all lists each entry is 
identified by a coordinate (i, j), which in the LIP and LSP 
represents individual pixels, and in the LIS represents either 
the set ( , )D i j or ( , )L i j . To differentiate between them, we 

say that a LIS entry is of type A if it represents ( , )D i j , and 

of type B if it represents ( , )L i j . 
During the sorting pass [9], the pixels in the LIP-which 

were insignificant in the previous pass-are tested, and those 
that become significant are moved to the LSP. Similarly, sets 
are sequentially evaluated following the LIS order, and when a 
set is found to be significant it is removed from the list and 
partitioned. The new subsets with more than one element are 
added back to the LIS, while the Single-coordinate sets are 
added to the end of the LIP or the LSP, depending whether 
they are insignificant or significant, respectively. The LSP 
contains the coordinates of the pixels that are visited in the 
refinement pass. Below we present the new encoding 
algorithm in its entirety. It is essentially equal to Algorithm I 
[9], but uses the set partitioning approach in its sorting pass. 

 

Algorithm: 

1. Initialization: 

output { }( )2 ( , ) ,log max | |i j i jn c⎡ ⎤= ⎣ ⎦ ; set the LSP as 

an empty list, and add the coordinates ( , )i j H∈ to the 

LIP, and only those with descendants also to the LIS, as 

type A entries. 

2. Sorting Pass: 

2.1) for each entry (i, j) in the LIP do: 

2.1.1) Output ( ),nS i j ; 

2.1.2) If ( ),nS i j = 1 then move (i, j) to the LSP 

and output the sign of ,i jC ; 

                                                                                                                                                              Vol. 1, 74



Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India 
 

  

     2.2): for each entry (i, j) in the LIS do: 

2.2.1) if the entry is of type A then  

o Output ( ( , ))nS D i j : 

o If ( ( , ))nS D i j = 1 then 

* for each ( , ) ( , )k l O i j∈  do: 

o Output ( , )nS k l ; 

o If ( , )nS k l = 1 then add ( , )k l ) to the LSP 

and output the sign ,k lC ; 

o If ( , )nS k l = 0 then add ( , )k l ) to the LIP; 

* If ( , ) 0L i j ≠  then move ( , )i j  to the end of the 

LIS, as an entry of type B, and go to step 2.2.2); 

otherwise, remove entry ( , )i j from the LIS; 

2.2.2)  If the entry of type B, then  

• Output ( )( , )nS L i j  ; 

• If ( )( , )nS L i j  =1 then 

* Add each ( , ) ( , )k l O i j∈ to the end of the LIS 

as an entry of type A; 

* Remove ( , )i j  from the LIS. 

3) Refinement Pass: for each entry ( , )i j  in the LSP, 

except those included in the last sorting pass (i.e., with 

same n ), output the nth most significant bit of 
|,| |i jc ; 

4) Quantization-Step Update: decrement n  by 1 and go 
to Step 2. 

One important characteristic of this algorithm is that the 
entries added to the end of the LIS in Step 2.2) are evaluated 
before that same sorting pass ends. So, when we say “for each 
ntry in the LIS” we also mean those that are being added to its 
end. With this Algorithm, the rate can be precisely controlled 
because the transmitted information is formed of single bits. 
Note that in this Algorithm, all branching conditions based on 
the significance data nS -which can only be calculated with 

the knowledge of ,i jc are output by the encoder. Thus, to 

obtain the desired decoder’s algorithm, which duplicates the 
encoder’s execution path as it sorts the significant coefficients; 
we simply have to replace the words output by input in this 
Algorithm. Comparing the algorithm above to Algorithm I, we 
can see that the ordering information ( )η k  recovered when 

the coordinates of the significant coefficients are added to the 
end of the LSP; that is, the coefficients pointed by the 
coordinates in the LSP are sorted as in [4]. But note that 
whenever the decoder inputs data, its three control lists (LIS, 
LIP, and LSP) are identical to the ones used by the encoder at 
the moment it outputs that data, which means that the decoder 
indeed recovers the ordering from the execution path. It is 
easy to see that with this scheme, coding and decoding have 
the same computational complexity.  

An additional task done by decoder is to update the 
reconstructed image. For the value of n when a coordinate is 
moved to the LSP, it is known that 

2n     ≤  , || i jc  < 2n+1                                                                            

So, the decoder uses that information, plus the sign bit that 
is input just after the insertion in the LSP, to set 

, 1.5* 2n
i jc = ±$ . Similarly, during the refinement pass, the 

decoder adds or subtracts 2n-1 to ,i jc$  when it inputs the bits 

of the binary representation of , || i jc . In this manner, the 
distortion gradually decreases during both the sorting and 
refinement passes. 

 
IV. RESULTS AND DISCUSSION 
 
The SPHIT algorithm has been tested on various images. 

The results are shown for three images of size128 X 128. 
Figures 4.1, 4.3 and 4.5 shows the original and reconstructed 
images of Lena, Barbara and Baboon respectively. Figures 
4.2,4.4 and 4.6 shows the Bit rate Vs. PSNR (db) curves for 
Lena, Barbara and Baboon images using haar, bior2.2, bior4.4, 
db7 and db10 respectively. 
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Fig.4.2 Bit rate Vs PSNR (db) for Lena 
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Fig.4.1The original (a) and reconstructed (b) image of Lena 
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               (a)                                                 (b)  

Fig.4.3 The original (a) and reconstructed image (b) of     
Barbara 
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Fig.4.4 Bit rate Vs PSNR (db) for Barbara    
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(b) 

Fig.4.5 The original (a) and reconstructed image (b) of Baboon 
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Fig 4.6 Bit rate PSNR vs. bit-rate for Baboon image  
 

 
TABLE I. COMPARISON OF PSNR VS BIT-RATE FOR BABOON USING VARIOUS 

FILTERS 
 

PSNR (db) Rate 
bpp haar Bior2.2 Bior4.4 Db7 Db10 

3 34.57 34.40 34.79 34.69 34.62 
2 29.19 29.01 29.46 29.27 29.20 

Above results show that using SPHIT we get better PSNR 
for low detail images for all bit rates. Comparing results for 
various filters show that bior4.4 filter gives higher PSNR. 

 

IV.  CONCLUSION  
Researchers have invested a substantial amount of effort in 

studying Image compression in the context of data storage, 
transmission capacity and scalability. This seemingly most 
important application in terms of communication, therefore, 
received considerable attention. In spite of this attention, the 
problem of data compression continues to harbor plenty of 
challenges, especially for low bit rate requirement.  

     In this paper we analyzed the SPIHT algorithm for 
image compression .We have used various types of standard 
images for illustration purpose. We used ‘Lena’ a Low detail 
Image, ‘Barbara’ a Medium detail Images and ‘Baboon’ a 
High detail Image.  

We analyzed the performance of SPIHT algorithm for 
various bit rates and various levels of decompositions. 

     Results show that, SPIHT gives high PSNR for low 
detail images for all bit rates. In case of level of wavelet 
decomposition it can be observed that increase in level of 
decomposition gives higher PSNR values for all bit rates.  

Based on these results it can be stated that SPIHT 
algorithm is completely based on the statistical contain of the 
image, which is to be compressed and the order of wavelet 
approximations. 
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