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Abstract -- This paper studies an application of support vector 

regression (SVR) for image watermarking. The watermark is 
scrambled to improve the robustness against various attacks. 
Feature extraction is done using a SVR neural network from the 
pixel locations determined randomly by a chaotic map. The 
watermark is adaptively embedded into the cover image leading 
to minimal visual quality degradation, and the scheme is resistant 
to image processing attacks. 
 

Index Terms -- Image processing, watermarking, support 
vector regression, Arnold transform, chaos. 

I.  INTRODUCTION 
IGITAL watermarking is one of the main research areas 
of information hiding [1] aimed at image authentication, 
copyright protection, violation detection, etc. Most 

watermarking techniques proposed in the literature fall into 
two categories: spatial-domain and frequency-domain 
methods. Neural networks are suggested as an alternative 
approach due to their high fault tolerance and potential for 
adaptive training [2].  
     There has been considerable interest to study the 
applications of a function approximation technique called 
support vector regression (SVR). Although it has many 
theoretical advantages, it has only recently been applied to 
image processing applications. Li et al. [3] suggested the use 
of SVR for embedding watermarks in still images. Our work 
extends their scheme by embedding the watermark in an 
adaptive manner such that the resulting image has minimal 
visual quality degradation. Also, the proposed scheme is 
resistant against various image processing attacks, and the 
extracted watermark is highly correlated with the original 
watermark. 

II.  PRELIMINARIES 

A.  Arnold Transform 
     A meaningful binary two-dimensional image is used as a 
watermark, which is scrambled using the Arnold transform [2] 
to improve the robustness against attacks and to enhance the 
secrecy of the watermark. The two-dimensional automorphism 
Arnold transform is given by 
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where ( ', ')x y = transformed location, ( , )x y = original 
location, p  = seed of permutation, w  = width and h  = height 
of image. Repeatedly transforming the image generates 
different results until returning to the original image due to the 
periodic property of transform. Fig. 1 shows the effect of the 
transform on a 32x32 watermark. 
 

 
 

Fig. 1  Scrambling of Watermark (p=2) 
 

B.  Chaos Map 
     Chaotic maps have found applications in digital 
watermarking to enhance security [4]. The most attractive 
feature of chaos in watermarking is that it is extremely 
sensitive to initial conditions, and two sequences generated 
from different initial conditions are uncorrelated statistically. 
Behavior in chaotic systems is aperiodic so that no variable 
describing the state of the system undergoes a regular 
repetition of values. A logistic map is the simplest chaotic 
map and is described as 

1 (1 )k k kX X Xµ+ = −             (2) 
where 0 4µ< ≤  and 0 1kX< ≤ .  
When 3.569 4µ< ≤ , the map is in chaotic state [4]. Using 
this mapping, pixel locations can be determined randomly 
from the cover image for feature learning by the neural 
network. The length of the sequence { }kX X=  is set to the 
size of the watermark image. 
 

C.  Support Vector Regression 
     Support vector machines (SVM) have found application in 
various pattern recognition and classification problems, 
resulting in a maximal margin hyperplane classifier [5]. SVMs 
are also extended to solve regression problems using support 

Santosh V. Chapaneri, IEEE Student Member 

 Adaptive Image Watermarking using Support 
Vector Regression  

D 

                                                                                                                                                              Vol. 1, 93



Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India          
 
 
vector regression (SVR) by the introduction of an ε-insensitive 
loss function. The input training data is mapped into a high-
dimensional feature space nonlinearly using the kernel 
mapping defined as 

2 2( ') / 2( , ') x xKer x x e σ− −=                       (3) 
     In ε-support vector regression by Vapnik [6], the goal is to 
find a function ( )f x  that has at most ε-deviation from the 
actually obtained targets for all the training data. The 
algorithm for nonlinear regression is described as 
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where b  is the bias and the Lagrangian parameters are 
*, 0i iα α ≥ . Only a few of these parameters are non-zero for 

which the corresponding training samples are called support 
vectors. The nonlinear learning problem is transformed to a 
linear problem in a high-dimensional space using the above 
mentioned kernel mapping. The regression algorithm is a 
result of solving the optimization problem for weights of the 
network: 

       maximize            (5) 
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The Lagrangian parameters are obtained with quadratic 
programming. The constant 0C >  measures the amount up to 
which deviations larger than ε can be tolerated. The bias b  is 
found using the KKT conditions [5]: 
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     The ε-insensitive loss function is attractive because, unlike 
other functions like quadratic and Huber cost functions where 
all the data points are support vectors, the support vector 
solution is sparse [7]. 
 

III.  PROPOSED SCHEME 
     In our proposed algorithm, the Arnold transform is used to 
scramble the watermark in the preprocessing stage. A chaotic 
map is used to determine randomly the pixel locations where 
the watermark is embedded into the cover image. The SVR 
neural net is trained to learn the relationship between the each 
randomly selected pixel and its eight neighbors. Since 
neighboring pixels in an image are highly correlated, this 
correlation feature is useful to learn so that the SVR can 
generalize well, and so that the watermark can be recovered 
even in the case of various attacks on the watermarked image. 
The watermark is adaptively embedded into the cover image 
depending on the local region characteristics of the image, 

thus leading to minimal visual quality degradation of the 
watermarked image. 

A.  Watermark Embedding with SVR 
1) Consider the cover image as I with 8 bpp grayscale 

of width wI  and height hI , 0 ( , ) 255I i j≤ ≤ , where 

0 wi I≤ <  and 0 hj I≤ < . A binary valued watermark 
image is represented as W  of width wW  and 
height hW , ( , ) (0,1)W i j ∈ , where 0 wi W≤ <  and 

0 hj W≤ < . 
2) Apply the Arnold transform to W to obtain the 

scrambled watermark 'W  using (1). Convert the 
resulting watermark to a 1-D sequence as follows:  
          ' ' ' ' '

0 1' ( , ,..., ,..., 1)k w hW W W W W W= −         (8) 

where ' '( , )kW W i j= ,  wk iW j= + , 0 wi W≤ <  and 

0 hj W≤ < . 
3) Using the chaotic map (2) and a pre-specified initial 

value 1( ) (0,1)K X= ∈ , generate a random chaotic 

sequence { },1k w hX X k W W= ≤ ≤ . Divide the cover 
image into non-overlapping 8x8 blocks in scan-line 
order and label the blocks. For convenience, consider 
a cover image of size 256x256 having 1024 blocks. 
Multiply each element of X  by 1024 and round 
towards zero to obtain a sequence of random block 
locations '' { }kX X= , whose range is [1, 1024] in the 

integer domain. Thus, '
kX  represents the block index 

and we choose the second row and second column 
co-ordinate in each block as the selected pixel. Let 

kS  be the set of these randomly selected pixel co-
ordinates. 

4) Model the relationship between the randomly 
selected pixel and its eight neighbors using SVR.  
The input training pattern is 

1, 1 1, 1, 1 , 1

, 1 1, 1 1, 1, 1

( , , , ,
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=
  

and the desired output is ,x yd p=  for all selected 

pixels ( , ) kx y S∈  and ,x yp  is the intensity of the 

selected pixel. Thus, the training set is { , }k kP dΩ =  

where 1,..., w hk W W= . Apply Ω  to train the SVR: 

*

1
( ) ( , )

w hW W

k k k k
k

V Ker P x bα α
=

= − +∑      (9) 

where the kernel is a radial basis function (RBF) as in 
(3), *

kα  and kα  are the trained Lagrange coefficients 
and b  is the bias. 

5) Embed the scrambled watermark 'W  into the cover 
image adaptively. Calculate the actual outputs kV  
corresponding to kP  using the trained SVR with (9). 
For the selected pixel, determine the gradient 
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magnitude and standard deviation in its 3x3 
neighborhood. Compute the embedding strength for 
the pixel location ( , )x y  as 

   
( , )( , )( , ) ( , )(1 )(1 )

I x yx ye x y qI x y
A B

σ ∇
= + +

r

 (10) 

where (0,1)q ∈  is the user parameter for  embedding 
strength, ( , )I x y  is the pixel intensity at this location, 

( , )x yσ  is the standard deviation of pixel values in 

the local neighborhood and ( , )I x y∇
r

 is the gradient 

magnitude computed using Sobel operator [8]. A  
and B  are the normalization factors for the standard 
deviation and gradient magnitude, respectively, and 
can be found empirically. Embed '

kw  by modifying 
the pixel values as follows: 
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    (11) 

where 0 w hk W W≤ < . Larger q  can offer better 
robustness but can degrade the visual quality of the 
watermarked image. 'I  is the  resulting watermarked 
image. 

 
     The strength of the embedded watermark is adapted to the 
local characteristics of the image due to the influence of 
standard deviation (SD) and gradient magnitude (GM). As a 
measure of image activity, SD and GM are analogous to each 
other. Although experiments using only SD or GM leads to 
similar performance, we use both in accordance to [8]. For 
smooth image regions, both the SD and GM are close to zero 
and have an insignificant effect on the watermark embedding 
strength. If SD is high, indicating an image region with high 
variance, then the embedding strength is higher. The same 
case occurs with an image region with GM, indicating high 
gradient magnitude (candidate edge pixel). Since the human 
visual system is less sensitive to pixel intensity changes in 
busy and edge image regions, the watermarking strength can 
be larger in such regions without significantly affecting the 
watermark visibility. 
 

B.  Watermark Extraction 
     The watermark can be extracted from the watermarked 
image using the same algorithm, except that the procedure for  
training the SVR is not required. Using K , determine the 
random pixel locations as in step 3 above. Thereafter, use the 
trained SVR (9) to calculate the output values '

kV  for all 
selected pixels. Then the watermark bits can be recovered as 

' '
'' 1 ( , ) ( , )

0
k k

k
if I x y V x y

w
else

⎧ >
= ⎨

⎩
                     (12) 

where 0 w hk W W≤ < . Apply the inverse Arnold transform, i.e. 

unscramble ''W  to recover the extracted watermark W% . 
 

IV.  EXPERIMENTAL RESULTS 
     Peak signal to noise ratio (PSNR) is used to assess the 
difference between the cover and watermarked images. To 
estimate the correctness of the retrieved watermark, we use the 
normalized correlation (NC) which is defined as follows: 

         1 1
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                  (13) 

where w hW W  is the size of the watermark, ( , )W i j  is the 

binary value of the ( , )i j th  pixel of watermark and ( , )W i j%  is 
the binary value of the ( , )i j th  pixel of extracted watermark, 
and (0,1)NC ∈ . 
 
     We tested the proposed watermarking scheme on standard 
grayscale cover images, such as Lena, Baboon, and Pepper, 
under various image processing attacks using Adobe 
Photoshop. The watermark used is the binary image logo 
made of character E with size 32x32. The parameter set for 
simulating the proposed watermarking scheme with SVR was 
as follows: 2p =  for Arnold transform, 0.1564K =  for 
chaotic sequence, 3.7µ =  for mapping to chaotic state, 

100C = , 0.008ε =  where ,C ε  are the necessary 
parameters for optimizing the trained coefficients and 10σ =  
for width of RBF kernel for SVR. The degrading of the 
watermarked image depends on the watermark strength 
parameters ,q Aand B . In the experiments, we set 0.1q = , 

200A =  and 500B = . Higher values of A  and B  reduce 
the effects of SD and GM, and higher ( 0.4)q ≥  results in 
significant visual quality degradation. 
 

 
 

Fig. 2  Attack-free recovery for Peppers 
 
     Fig. 2 shows an example of a watermarked image and the 
extracted watermark using Peppers. The NC values obtained 
under the attack-free case were 0.9898 for Peppers, 0.9857 for 
Lena and 0.9795 for Baboon image. 
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TABLE I 
WATERMARKS FROM LENA USING SVR  

 
No. Attack [9] NC PSNR(dB) 
(a) Attack-Free 0.9857 40.381 
(b) Sharpened 0.9262 29.855 
(c)  Uniform Noise (10%) 0.9529 38.855 
(d) Liquified 0.9508 24.525 
(e) Focus Restoration 0.8873 19.792 
(f) Equalization 0.8153 19.397 
(g) Cropped (25%) 0.8043 11.504 
(h) Blurred 0.9064 35.729 
(i) Auto-Contrast 0.8627 23.053 

 
 

 
 

Fig. 3  Watermarks after attacks (Table I) using SVR 
 

 
     Table I shows a detailed analysis for the Lena image. The 
watermarks extracted from the watermarked Lena image are 
shown in Fig. 3 where the specific attacks are as listed in 
Table I. The extracted watermark is highly correlated to the 
original watermark, except in the cases of severe geometrical 
attack like cropping. Even with the reduction in PSNR value 
of the watermarked image after the attacks, the extracted 
watermark still remains visible and meaningful relative to the 
original watermark. Similar results were obtained with other 
standard images. 
 

V.  CONCLUSION 
     This work demonstrates the use of Support Vector 
Regression for digital image watermarking. The embedding 
strength of the watermark is adapted according to the local 
characteristics of the cover image, thus resulting in high visual 
quality of the watermarked image. Scrambling of the 
watermark with the Arnold transform improves robustness 
against various attacks and also enhances the secrecy of the 
recovered watermark. The results show that the scheme is 
resistant against various image processing attacks. 
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