
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Secure User Authentication for Corporate Sector

Abstract-The aim of this article is to describes and develop a
model that works on the issues related to setting up Secure User
Authentication for Corporate Sector Systems. The range of
front-office applications in corporate sector sometimes makes it
difficult or even impossible to exchange information between
services. Each service has its own applications. The information
in these applications either only concerns the service itself, or
must be shared with other services treating the same customer.
In addition, from the point of view of the central information
system, some of these specific applications are black boxes that
manage themselves (but unfortunately do not correct
themselves). The isolation of the applications affects customer
management on inter-service interactions. Thus, inter-service
requests use paper forms. The client details have been designed
to meet this requirement of controlled sharing of data. It is a
central application containing the account and personal
information needed to coordinate the client's requirements like
bill payment, reports, monthly statements, etc. It usually
contains a summary of the data, and may also be coupled to a
server-providing full. Unfortunately, this details does not
completely solve all problems linked to access to a customer's
data. They should get a single authentication module. In other
words, once they should automatically be logged on to the
applications. It is quite tiring for them to have to remember the
separate user ids and passwords and use them during the
application logons. The corporate sector can establish and
maintain an effective SSO environment that maximizes security
and facilitates compliance. The method or the protocol we had
used is Kerberos As the result we have provided a
comprehensive and integrated solution that can helps corporate
sector by simplify integration between systems and applications
across the enterprise and with other organizations across the
Internet, facilitate security and compliance initiatives by helping
to reduce exposure and providing audit and tracking reports.
Enhance end-user experience through single sign-on and
seamless access to multiple services. Create revenue-generating
opportunities by enabling controlled access to customer
information and supporting partnerships with financial service
providers. Reduce administration overhead, including help-desk
costs, by providing a single authentication module.

I. INTRODUCTION
Many real life systems use an authentication protocol called

Kerberos [5]. The basic for Kerberos is another protocol
called Needham-Shroeder. Designed at MIT to allow the
workstation to allow network resources in the secure manner.
__
Jitendra Singh, Sr. Lecturer, CS Dept. SRM-IMT, Modinagar Campus, SRM
University, Chennai. Email: jitendra.jit@gmail.com

R. P. Mahapatra, Assistant Professor, CSE Dept. SRM-IMT, Modinagar
Campus, SRM University, Chennai . Email: mahapatra.rp@gmail.com

The name Kerberos signifies a multi-headed dog in the Greek
mythology [5] (apparently used to keep outsiders away)
Version 4 of Kerberos is found in most practical
implementation. However, Version 5 is also in use now[6].
How does Kerberos work [1]?
There are four parties involve in Kerberos protocol:

1. Alice: the client workstation.
2. Authentication server (AS): verifies (authentication)

the user during login.
3. Ticket granting server (TGS): issues ticket to certify

proof of identification.
4. Bob: the server offering service such as network

printing, file sharing or an application program.
The job of AS is to authentication every use at the login

time. AS shares unique secure password with every user. The
job of TGS is to certify to the server in the network that user
is really what the claim to be. For proving this, the
mechanism of tickets (while allow entry into a server, just as
a ticket which allow entry into a server, just as a ticket allow
parking a car are entering a music concert is used.
There are three primary steps in the Kerberos protocol.
Step1: login

To start with Alice, the user, site down at an arbitrary
publication workstation and enter her name .the workstation
sends her name in plain text to the AS, as shown figure 1. In
response, the AS performs several actions. It first creates a
package of the user name (Alice) and randomly generated
session key (KS). It encrypts this package with symmetric key
that the AS shares with the ticket-granting server (TGS). The
output of this step is called as the ticket granting ticket (TGT).
Note that TGT can be opened only by the TGT since only it
possesses the corresponding symmetric key for decryption.

Figure 1: Alice sends a login request to AS

The AS then combine the TGT with the session key (KS)
and encrypt the two together using a symmetric key derived
from the password of Alice (KA). Note that the final out put
can therefore, be opened only by Alice. This is shown in
figure 2.

Jitendra Singh and R. P. Mahapatra

 Vol. 5, 51

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

After this message is Received, Alice’s workstation asks
her for the password. When Alice enters it .the workstation
generated the symmetric key (KA) derived from the password
(in the same manner as AS would have done earlier) and uses
that key to extract the session key (KS) and the ticket granting
ticket (TGT).

The workstation destroys the password of Alice from its
memory immediately; to prevent the attacker from stealing it,
note that Alice cannot open the TGT, as it is encrypted [3]
with the key of TGS.

Step 2: Obtaining the Service Granting Ticket (SGT)
Now let us assume that after a successful login, Alice want
make use of Bob-the email server for some email
communication for this Alice would inform her workstation
that she need to contact Bob. Therefore, Alice need to ticket
to communicate with Bob, at this juncture, Alice workstation
create s a message intended for the ticket granting server
(TGS). Which contain the following item:

1. The TGT as in one step 1
2. The id of the server (Bob) whose service Alice is

interested in, the current time stamp, encrypted with
the same session key (KS). This is shown in figure 3.

Figure 2: AS sends back-encrypted session key and
 TGT to Alice

As we know, the TGT is encrypted with the secret key of
the ticket-granting server (TGS). Therefore, only the TGS can
open it. This also serves as proof to the TGS that the message
indeed came from Alice .why? This is because, if you
remember, the TGT was created by the AS (remember that
only AS and TGT know the secret key of TGS) further more,
the TGT and the KS were encrypted together by the AS with
secret key derived from the password of Alice[2]. Therefore,
only Alice could have opened that package and retrieved the
TGT.

Once the TGS is satisfied of the credentials of Alice the
TGS creates a session key KAB, for Alice to have secure
commutation with Bob. TGS send it twice to Alice :once
combined with Bob’s id (Alice) and encrypted with the
session key (KS), and second time, combine with Alice’s id
(Alice) and encrypted with Bob’s secret key (KB). This is
shown in figure 4
Note that attacker Tom can try and obtain the first message in
this step sent by Alice, and attempt a replay attack. However,
this would fail as the message from Alice contains the
encrypted timestamp. Tom cannot replace the timestamp,
because he does not have the session key (KS). Even the tom
attempts a reply attack really quickly, all that he will get back
is the above message from TGS, which tom can not open, as
he does not have access to either Bob’s secret key or the
session key (KS).

Figure 3: Alice sends a request for a SGT to this TGS

Step 3: User contacts Bob for accessing the server

Alice can now send KAB to Bob in order to enter a session
with him. Since this exchange is also desired to be secure,
Alice can simply forward KAB encrypted with bobs secret
key (which she had also received from the TGS in the
previous step) to Bob. This will ensure that only Bob can
access KAB. Furthermore, to guard against reply attack, Alice
also sends the time stamp, encrypted with KAB to Bob. This
is shown in fig 5.
Since only Bob has his secret, he uses it to first obtain the
information (Alice + KAB) from this, it gets the key KAB
which he uses to decrypt the encrypt time stamp value.
Now how would Alice know if Bob received KAB correctly
or not? In order to satisfy this query, Bob now adds 1 to the
timestamp send by Alice, encrypt the result with KAB and
send it back to Alice. This is shown in fig 6. Since only Alice,
and Bob know KAB, Alice can open this packet, and verify
the timestamp incremented by Bob was indeed the one sent
by her to Bob in the first place.
Now Alice and Bob can communicate securely with each
other. They would use the shared secret key KAB to encrypt
massage before sending and also to encrypt the encrypted
message received from each other.

 Vol. 5, 52

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Figure 4: TGT sends responds to Alice

An interesting point here is that if Alice now want to
communication with another server any carol, she simply
need to obtain another share key from the TGS only now
specifying carol instead ob Bob in her message .the TGS will
do needful, as explained earlier. The out come is that Alice
can now access all the resources of network in similar
manner, each time obtaining a unique ticket (secret key) from
the TGS to communicate with a different resource .of course,
if Alice want to continue communicating with Bob alone, she
need not obtain a new ticket every time. Only for the first
time that she want to communicate with a server that she need
to contact TGS and obtain a ticket. Also, Alice’s password
never leaves her workstation, adding to the security.
.

Figure 5: Alice sends KAB securely to Bob

Since Alice needs to authenticate or sign on only once, this
mechanism is called a single sign on (SSO). Alice need not
prove her identity to every resource in the network
individually. She needs to authenticate herself only to the
central AS only once. That is good enough for the all the
other servers/network resource to be convinced of Alice’s
identity

SSO is a very important concept for cooperate network,
because they grow over period of time with multiple
authentication mechanism and divers implementation.
These can be segregated into single, uniform authentication
mechanism using SSO. In fact, Microsoft passport technology
on the Internet is also based on this philosophy. Microsoft
window NT also uses the Kerberos mechanism heavily. This
is also why once you log on to a windows NT workstation,
you can access your email and other secret resources without
requiring explicit logons, as long as the correct mapping s are
done by the system administrator. Clearly, not every server in
the world would trust a single AS and TGS. Therefore, the
designers of Kerberos provide a support for multiple realms,
each having its own AS and TGS[8].

Figure 6: Bob acknowledges the receipt of KAB

Version 5 of Kerberos overcome some of the shortcoming
of version 4.version 4 demands the use of DES. Version 5
allows flexibility in the term of allowing the choice of other
algorithms. Version 4 depends on IP address as identifier.
However, version 5 allow the use of other type as well (for
this, it tags network address with type and length)

II. SINGLE SIGN ON (SSO) APPROACHES

Single sign on (SSO)[4] solutions are based on one of the
two broad levels approaches: the script approach, and the
agent approach.

 Vol. 5, 53

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Figure 7: Approaches

Scripting:

In the scripting technique, the SSO software mimics user
actions. It does this by interpreting a program, which
simulates the user depressing keyboard keys, and reacting to
individual end–system sign-on prompts. The SSO product
itself holds and manages the different sets of authentication
information from its databases and inserts it in the data stream
simulated to be from the user to enter information at the
appropriate points. If needed, the script can be programmed to
prompt the user to enter information at appropriates places in
the script.

In this approach, batch files and scripts containing
authentication information (usually user id and passwords
along with the login command s, if any) for each
application/platform are created. When a user requests an
access, a script runs in the background, and performs the
same commands/tasks that the user performs. The scripts can
contain macros to replay user keystrokes/commands within a
shell. This is easy for users, but quite tough for system
administrators, as they have to first play a role in the creation
of scripts have to maintain these script securely (as they
contain user ids and passwords, etc.) and have to also ensure
change coordination when users wants to change their
passwords [1].

Agents:

In the agent-based approach, every Web server running an
application must have a piece of software, called as an agent.
Additionally, there is a single SSO server, which interacts
with the user database to validate user credentials. Agents
interact with SSO server to achieve single sign on.

Whenever a user wants to access an application /a site
participating in SSO, the agent sitting on the particular Web
server intercepts the user’s HTTP request and checks for the
presence of a cookie. There are two possibilities now:

1. If the cookie is not present, the agent sends the login page

to the user, where the user must enter the SSO user id and
password. The login request goes to the SSO server,
which validates the user credentials, and if this process is
successful, it creates a cookie for the user.

2. If the cookie is present, the agent opens it, validates its
contents, and it they found ok, and allows further
processing of user’s request. [1]

III. IMPLEMENTATION

Single sign on (SSO) solutions are based on one of the two
broad levels approaches: the script approach, and the agent
approach. We can choose either one. However. Since the
agent approach is considered more suitable for web-based
application. We shall use it here, as we know an agent is
small program that runs on each of web servers that host an
application within application framework. This agent helps
coordinate the SSO workflow in term of user authentication
and session handling.

The corporate sector’s applications run on the Intel-based
servers on Windows NT 4.0 operating system. These
applications are developed by using JSP/ASP and SQL server
6.0.the web server is Tomcat server/Microsoft ‘s Internet
information system (IIS) 4.0. There is an involvement of
Microsoft transaction server (MTS) for transaction handling.
However the SSO requirement need not be concerned with it.

Figure 8: SSO Architecture

In order to develop the agent no special hardware or
software requirement are visualized. The agent is simple
program sitting on the IIS web server, and they can be written
in the form of ISAPI application (i.e. the filter on the IIS web
server). The broad level solution architecture is depicted in
figure 8.

 Vol. 5, 54

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

As we can see the SSO architecture [1] contains two main
pieces: the agent sitting on web server, and dedicated SSO
server, the purpose of these two pieces is as follow:

1. Agent sitting on web server: An agent would intercept
every HTTP request arriving at the web server. There is one
agent per web server, which hosts an application. It interacts
with the client browser on the user side and with the SSO
server on the application side.

Dedicated SSO server: The SSO server user transient

cookies to provide session management functionalities. A
cookie contains information such as the user id, session id,
session creation time, session expiration time, etc.
The application flow would be as follow.
1. For every HTTP request that is intercepted, the agent will
look for the existence of valid cookies. There are two
possibilities:

I) If the cookie is not found, it will initiate a challenges
screen to allow the user to enter her credentials. The
credentials may be simple user id/password, or user id
and digital certificate, depending on the mechanism
chosen for user authentication .the agent would receive
these details enter by the user, and forward them to the
SSO server, which would validate them against the user
data base .if the user is authenticated successfully, the
SSO server will respond back with a credential token.
The agent may forward part of the token to the client
browser as cookies. The cookies may contain basic
information like session identifier, session expiry time,
etc.
II) If the agent finds an exiting cookie along with an
intercepted HTTP request, it will request the SSO server
to decrypt the same and determine whether:

• The user is already authenticated.
• The authentication is still valid.
• The user can access the application

associated with this agent
If the authentication has expired, it will ask the user to
provide authentication details once again.

2. The SSO server will receive authentication request from
the agent .it will then initiate a call to an authentication JSP.
This JSP will authentication the user against the user
database, and returns success or failure.

On successful authentication, the SSO server will build a
credential token with some information and return the whole
or part of this token to the agent.

If the user already authenticated and the agent request for
verification, the SSO server will determine whether the user is
allowed an access to the system. Accordingly, it will initiated
the authentication process or will inform the agent to allow
user to access the application, if the session is still valid.

IV. CONCLUSION

The corporate sector can establish and maintain an effective
SSO environment that maximizes security and facilitates
compliance. We provide a comprehensive and integrated
solution that helps corporate sector:

1. Provides integration with other authentication (like
smart cards) Secure the primary network logon and
access to application credentials and other single
sign-on data with strong two-factor authentication.

2. Reduces help desk support costs by up to 40%*With
Secure SSO, users no longer need to remember as
many credential sets with single sign on, meaning
fewer calls to reset passwords or unlock accounts.

3. Enhances user convenience and increases
productivity Users access multiple systems and
applications using a single secure login. Reduce
employee time spent logging on and waiting for
resolution from help desk password resets.

4. Reduces exposure to risk Eliminate the temptation
for users to write down passwords or create simple,
guessable static credentials. Create strong password
policies that don’t require less secure password
sharing or synchronization methods.

5. Assists with compliance Secure SSO can assist with
compliance of mandates and government regulations
for identity, privacy, policy enforcement, and audit
and authentication services.

V. RECOMMENDATION AND FUTURE WORK

The major direction is to adapt these ideas to a file service

that supports a more secure inter-branch payment and the
technology to achieve non-repudiation with more
enhancements.

VI. ACKNOWLEDGEMENT

There are far too many people to try to thank them all;

many people have contributed to the development of this
paper. This is only a partial listing....

1. I also express my gratitude to Dr. S. P. Sabarwal,
Director, SRM-Institute of Management &
Technology, Modinagar and all the faculty members
for providing me invaluable support, guidance, help
and inspiration all through project.

2. I owe my deep regards and honour to Dr. K. K.

Bhardwaj, Professor, School of Computer and
Systems Sciences, Jawaharlal Nehru University,
New Delhi for his unconditional encouragement,
motivation and guidance throughout the entire
project.

 Vol. 5, 55

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

VII. REFERENCES

[1] Kahate, Network Security and Cryptography, Tata McGraw Hill.
[2] Pfleeger, C. Security in Computing. Prentice Hall, 1997.
[4] Mel, H.X. Baker, D. Cryptography Decrypted. Addison Wesley,

2001.
[7] Bryant, W. Designing an Authentication System: A Dialogue in Four

Scenes.
[8] J. T. Kohl, B. C. Neuman, and T. Y. Ts'o. The evolution of the

Kerberos authentication system. In Distributed Open Systems, pages
78-94. IEEE Computer Society Press, 1994.

[9] B. Clifford Neuman and Theodore Ts'o. Kerberos: An
Authentication Service for Computer Networks, IEEE
Communications, 32(9): 33-38. September 1994.

[10] S.P. Miller, B. C. Neuman, J. I. Schiller, and J.H. Saltzer. Section
E.2.1: Kerberos Authentication and Authorization System. Project
Athena Technical Plan, MIT Project Athena, Cambridge,
Massachusetts, October 1988. (Version 4)

[11] S. M. Bellovin and M. Merritt. Limitations of the Kerberos
authentication system. Computer Communication Review, 20(5):
119-132, October 1990.

VIII. BIOGRAPHIES

Jitendra Singh post graduated M.C.A from IGNOU University and
pursuing ALCCS equiv. to M.Tech. (CS) from IETE, New Delhi. His
employment experience included the U.P. Technical University, Lucknow,
CCS University, Meerut, Dr. B. R. Ambedkar University, Agra and presently
working as a Sr. Lecturer in SRM-IMT, Modinagar Campus of SRM
University Chennai. His special fields of interest included Network Security
and User Authentication Mechanism

R. P. Mahapatra post graduated M.E (C.S.E) from University of Madras

and pursuing PhD from Berhampur University Orissa. His employment
experience included the Anna University, Madras University, Mekelle
University, Ethiopia and presently working as an Assistant professor and
HOD (CSE & IT) SRM-IMT, Modinagar Campus of SRM University
Chennai. His special fields of interest included software engineering and
network security.

 Vol. 5, 56

