
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract-- This work addresses a Rich Internet application for

collaborative web development in a virtual environment inside a
browser, involving multiple users at the same time with an
extremely user friendly development interface and customized
deployment options. The RIA environment we propose would
facilitate highly intelligent code generation enabling even the
most naïve user to develop fully functional dynamic web pages,
limited only by his creative ability. This environment would also
provide for communication between client modules which would
provide implementation of the collaborative environment.

Index Terms—Rich Internet Applications, Web 2.0, RIA, Web
Authoring, Collaboration.

I. INTRODUCTION
n recent years different methodologies and tools have
been proposed to support the Web authoring process. Web
applications can be modeled by means of different levels
of abstraction and their code can be automatically

generated from the models, thus simplifying some of the more
expensive stages of the development process (i.e.,
codification, checking, and maintenance) [1][2][4]. If they are
used, they are devoted to improve manual modification [3].
Moreover, methodologies and tools have a high learning
curve for designers/developers with no experience in solving
problems using conceptual models [3]. For making web
application development less of an expert’s job, the need is
not of more advanced editors or powerful web authoring
tools; but that of a better mechanism which would guide the
user in the process of developing web applications.
 Currently existing applications with the same scope as that
of our proposed application mainly fall in two categories viz.
offline and online tools, both these types aid a user in
developing static web pages and sometimes dynamic web
pages but for that the user need to have the basic knowledge
of scripting languages. Also these tools come with the
installation issues in case of offline tools and online tools
offer different set of difficulties like delay in the operations,

Deven Shah is a faculty in Information Technology Dept. at S.P. College

of Engg., Mumbai, India (email: devenshahin@yahoo.com).
Manas Apte is a student of final year I T Engg., S.P. College of Engg.,

Mumbai, India. (Email: manasapte@gmail.com).
Shrikant Goswami is a student of final year I T Engg., S.P. College of

Engg., Mumbai, India. (Email: shrikant.goswami@gmail.com).
Ajit Padukone is a student of final year I T Engg., S.P. College of Engg.,

Mumbai, India. (Email: aj_it_86@yahoo.com).
Sahil Shirodkar is a student of final year I T Engg., S.P. College of Engg.,

Mumbai, India. (Email: s20sahil@gmail.com).

page loading problems. The experience presented in this paper
has the goal to carry out an intuitive and highly abstracted
approach of developing a web application where the user is
guided through the entire development process with an easy to
use interface. In the end the user would be able to design and
deploy static as well a dynamic data-driven websites without
requiring knowledge of DHTML or scripting languages. Our
proposal simplifies the development process by enabling the
user to translate his requirements using an interactive GUI
based on concepts needed to model web applications.
 This paper contains the proper analysis and design of the
proposed solution divided in the logically separate parts.
Section II contains the Introduction to the RIA and how it is
useful in web authoring, this section also emphasizes on the
features provided by the proposed application along with the
assumptions made and the estimated drawbacks. Section IV
illustrates the implementation of the proposed solution
regarding its overall architecture and containing modules viz.
GUI, Code generation, Database, Collaborative modules. Also
the website content management is explained in this section.
Finally the paper is concluded with the advantages and
drawbacks of the proposed application along with the brief
mention of future additions.

II. RIA BASED WEB AUTHORING.
The user experience in thin-client Web applications is not

comparable to desktop interfaces, responsiveness is lower due
to network overhead and unnecessary round-trip server
access, and disconnected usage is not supported [5]. Rich
Internet Applications (RIAs) have been recently proposed as
the response to the above mentioned drawbacks [6]. They
provide sophisticated interfaces for representing complex
processes and data, while minimizing client-server data
transfers and moving the interaction and presentation layers
from the server to the client. Most of the processing of data
can be done at the Client Side itself using a powerful client
scripting language. Instead of loading new pages for every
change of view, an RIA can modify the components of the
present document using DOM along with a markup language.
The original data remains on the server, of course, but the
RIA can request data in the background, while the user
focuses on the application itself. Different types of media are
used for data representation, making the user more engaged in
the application. With a view of fully exploiting these
capabilities, in the proposed application is designed to provide
facilities like

An RIA Based Environment for Collaborative
Web Application Authoring.

Deven Shah, Manas Apte, Shrikant Goswam, Ajit Padukone and Sahil Shirodkar

I

 Vol. 5, 68

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

A. WYSIWYG Environment.

The thick client engine enables browser to reflect the
changes in real time. The user is aware of the changes he is
making in the design layout as they are reflected immediately,
thus giving him the same output as seen during the designing
time. This facilitates “what you see is what you get”
environment.

B. Drag and Drop Toolbar.
The proposed solution uses drag and drop toolbar for

providing a user rich usability in arranging components,
alignment, etc of the design; giving it a desktop application
feel.

C. Automatic Code Generation.
The code for static HTML as well as validation script for

form based pages is generated at the client side engine. Also
the script for database connectivity is created at the server side
which is then integrated with the client-side code for data-
driven web pages.

D. Automatic Database Creation and Normalization.
As per the forms designed by the user the DDL queries are

passed to the backend and the database is created. The
Queries for data insertion or data retrieval are created as per
the user’s needs. With the help of adaptive normalization
technique the database is normalized initially using some trial
data and then on addition of further data records.

E. Collaborative environment for Page Design.
Collaborative Development means working together and

co-operating in the process of development. This facility is
provided by the two ways viz. Bi-directional communication
and real time reflection of design changes in the collaborating
modules. The Collaboration feature enables more than one
client to participate in the design and editing of the same
webpage. The changes made at one client are reflected
immediately at the other collaborative client’s view.

F. Website Content Management and Publishing.
Even after publishing the website to the internet users, the

designer of the web site will still be able to edit contents of the
any web page as well as add the new pages to the existing site
and again publish it with the updated version.

Some of the assumptions made while designing the

proposed system is the user uses fast internet connection with
RIA technology compatible browser. The user has enough
free disk space on his workstation so as to host a client engine
in the browser which has to be transferred from the server side

in order to load the application. Also the User should not hit
the browser refresh or reload button which will result in
restart of the entire application which might cause loss of
unsaved work.

III. IMPLEMENTATION
Fig. 1 illustrates the overall Architecture and

Implementation of the System.
The system has the traditional 3-tier architecture for web
applications. It consists of a Client Module, a Server module
and a database tier. In this case the client module is a “thick
client” that is along with the Presentation and Interface
functions it also consists a major amount of processing,
business logic as well as a temporary data store in which the
data that is currently required is brought in from the server.
The Client module is based on the Model-View-Controller
architecture. That is within this Module which is actually a
“View” component of the overall system, there are 3 separate
tiers. The data that is currently required for processing is
brought in to the client and stored in XML data Islands, which
form the temporary data tier of the client module. These data
structures also provide for persistent data because whenever
changes are to be saved then the required data is sent to the
server database.

The Client module also called the “Client Engine” consists
of the following.

i. A GUI module which handles the display view and also

the User interaction events. It uses Markup Languages for
display and DOM structure display modification.

ii. Controller which consists of business logic using client
scripting languages. This controller handles the events of
user interaction and carries out the required processing.
Any data it requires is stored in the data islands and if not
present then is brought in from the server.

iii. Data Islands which store the data brought in from the

server as well as data that is created dynamically and is
required to be stored.

iv. Server Communication Module which handles all server

communication. Most of the server requests are done in the
background without the user’s knowledge. Also these
requests may be Asynchronous which allows for
Application processing to continue without waiting for
server response. The data transfer between the client and
server is done in form of XML data. HTTP or HTTP(S)
channels are used for the transfers.

 Vol. 5, 69

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig.1. Overall System Architecture

The Data Islands store data that are required like current
User’s data, user’s web site related data, or data related to the
design of the currently edited web page. The controller
module is responsible for the functions like code generation,
generation of Queries for database related functions, as well
as handling user interaction like drag-and drop actions,
navigation between view states, and requesting data from
server of required. A normal sequence of interaction between
User and the module would be as shown in Fig.2.

The interactions enclosed in the white rectangle in Fig.2.
represent the generalized form of the user interactions with the
client module. The User interacts with the GUI which gives
the controller information about the actions. Based on this the
controller handles the event and may modify the data in the
data store, update the view of the interface and may optionally
save the current state of data to the server. All communication
with the server is done through the Server Sync component
which acts as an interface between the Client module and
Server.

The implementation of the proposed functionalities also
follows the basic interaction shown in Fig.2.

A. GUI Module
The GUI module is responsible for providing the interface

and a “Design Canvas” to the user.
The module basically consists of different “view states”

which are technically different “page views” that are
downloaded from the server all at once or in the background
without the user’s knowledge. As the user navigates between
the various features, the display switches between
corresponding view states. Each view state will contain
components which are either static, and do not change, or
dynamic, which are added, modified or removed from view as
per users actions. Static Components include tool bars, menus,
layout and style components etc. Dynamic components
include components which the user adds to his page design.
These components have to be created dynamically and added
to the view and modified or deleted.

Thus the user actions have to be monitored and the the

events are handled in various ways.

The User may click on a button or any component, he may

“drag” a component around in his web page design or he may
edit some components properties. These events have to be
identified along with the component that the user is acting on
and then the view state is modified dynamically.

Fig.3. shows the components of the GUI module. It

includes Controller Components like the Event Listeners,
Event Handlers and Display Manager. There are various user
actions which are handled in different ways. They may or may
not require data from the data store. The data store has the
data related to the GUI which is used by the event handlers for
updating the display view.

Fig.4. shows the various types of user action

When the user drags any control icon from the tool bar to

the design canvas, this event is handled by the drag manager,
which identifies the type of component to be added to the
design as well as the location. The properties of the
component along with their default values are retrieved from
the data store which contains all properties associated with
each type of component and the default value.

The display manager then takes over and using the
specifications creates the desired component dynamically and
adds it to the view.

The user may also drag a component to some other
location. This is again handled by the Drag Manager which
identifies the location and informs the Display manager to
update the view accordingly.

 Vol. 5, 70

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig.2. User Interaction Sequence.

Fig.3. Components of GUI Module.

 Vol. 5, 71

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig.4. Types of Events

Whenever the user selects any component to edit with a
mouse click, the event is identified and then the properties and
their current values are retrieved from the data store which
stores the state of the design that is all the currently added
components and their property values. These values are
returned to the display manager which updates the view state
and displays them to the user. The user may then edit the
properties. Again this is handled by updating the design state
as well as changing the properties of the component in the
display.

The user may click a button to navigate from one view state
to other. This is handled by the Controller which identifies the
view state to be activated and informs the Display Manager to
load it.

Thus the various actions of the user are handled by the
client module using client scripting requiring minimum server
interaction for page refresh.

B. Code Generation Module.
The static HTML code for the user workspace design is

generated using the concept of XML data islands. Data islands
are XML elements embedded inside the page source which
can be treated as DOM objects and can be suitably accessed
and modified. The GUI module provides a toolbar comprising
different components, layouts and templates for user design.
The designing of the Web page requires only dragging and
dropping of these components onto the work area called
design canvas. Whenever a particular item from the toolbar is
dropped on the work-area. the corresponding XML data island
is appended with an HTML tag or a set of nested HTML tags
corresponding to that item, nesting constraints are taken care
of by the code generation module through the use of event
handlers which fetch the current target where that item is
dropped (this facilitates addition of a child tag under proper
parent tag in the XML data island).
Fig.5. shows components of the Code Generation module.

In Fig.5. The Controller components are shown which
monitor and handle the user actions. The Event handlers know

which component is to be added or what modification is to be
done on the components. They get the information from the
GUI module. The generation of HTML code is done by the
event handlers. They update the “Design State” data store;
which stores the code of the current page design, which in turn
leads to change in the view state. The server sync module
reads the Design State and saves the state to the server.
Sometimes in collaborative environment the server sync
receives an update to the Design State from the Server. The
Server sync updates the design state according to this
information. This facilitates the exchange of “design state”
between collaborating client modules.

C. Database Design Module.

 1) Database Creation and Connectivity.

Another important aspect of code generation is, the creation
of database entities at the data-base server corresponding to
data acquisition forms created by the user. The items dropped
into the form container are stored in an array, which is then
used to generate and fire corresponding SQL query at the
database server. Support for the data retrieval is provided by
the query generator module. This provides intelligence for
getting the entities in the database on which the query is to be
fired and building a query on the fly depending upon the
particular constraints on the data to be displayed in the form.
The query building functionality is provided by recursively
asking for constraints in FROM WHERE and SELECT clause
of standard SQL. This query forms the basis for the generation
of server side code for the same web page. For data acquisition
pages the query is simply fired in the script code embedded in
HTML, whereas in case of data retrieval pages, first of all a
connection is established with the database by creating a
connection object, then a standard recordset object is linked to
this connection and finally the query is fired using this
recordset.

The Components of the Database Creation Module are as
shown in Fig.6 on next page.

The GUI module provides the information about the type of
component added as well as their properties which helps the
Query builder to generate the corresponding DDL Query. Also
the GUI provides the user’s parameters in the Form Design
properties which enable the Query builder to build the
corresponding DML Query. These Queries are sent to the
server and integrated with the code of the web page. The DDL
queries are used to create the database schema for the user’s
website. The Database Connectivity code is generated at the
server and integrated with the code generated at the client side.
The code created at client side contains only the server script
code for the binding of form fields and tables, but does not
contain the code for connecting to the database. This is
because the connection string to be generated depends on the
type of database system used in the back end.

 Vol. 5, 72

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig.5. Components of Code Generation Module

Fig.6. Database Module

 2) Database Normalization.

 Normalization helps to minimize the duplication of data
and safeguard against Data anomalies. Normalization of the
database is done by finding out the functional dependencies
between various columns of the table. The database created as
a result of the user designed forms will be by default in First
Normal Form as all the fields will be atomic and meant to

store only atomic data. The user will be asked to define a
primary key for every table generated or if the user is a naïve
user who doesn’t have any idea of the primary key a primary
key will be generated by the system. Higher normal forms can
be achieved by monitoring the data entered in the table for the
dependencies. Initially we will have to assume maximum
dependencies. A dependency can be taken as nonexistent only
when we have a valid record which violates it. We will
monitor all dependencies validity after the addition of some

 Vol. 5, 73

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

number of records. This number will be decided depending on
the size of the table to be normalized. For tables with few
columns, a few records are sufficient, while for larger tables,
more test data is required. The user will be initially asked to
enter the test data for the schema just created. Based on the
analysis of the test data an initial number of dependencies will
be proven false. On further analysis of the data when more
records have been added, more dependencies will validated or
invalidated. Thus we will be able to adaptively normalize the
data according to the records currently entered in the table.
 The Server module for database management will
maintain information about all tables that are currently created.
This information will be used along with our algorithm which
will help to achieve Normalization. Based on the results the
tables will be spitted or combined and the information will be
updated. This algorithm to normalize a schema is still under
work.

D. Collaborative Design Modules.
Collaborative Development means working together and co-
operating in the process of development. Collaboration can be
between various stakeholders. The following scenarios may
exist where a collaborative environment will prove extremely
useful.

 1) Expert and Beginner Designer Collaboration.

A beginner with no knowledge of visual components and
web designing process may want to develop a web site for
personal or business use. In this development process a mentor
would help the user to convert the design concepts into the
actual page layout by giving suggestions in the collaborative
environment. The mentor would guide the naïve user in the
process of creating his/her page with all the desired
functionalities, by interacting with the user in the realms of a
virtual environment where the mentor can suggest the usage of
appropriate components at appropriate places to design his
page in suitable . It also enables an experienced developer to
write customizable codes for a naïve user who can thereby
have all the desired functionalities.

 2) Client and Designer Collaboration.

A client who wants a web application developed may
collaborate with the actual designer in this environment.
Whatever changes designer brings about are reflected
immediately at the Clients view. This will help him to monitor
the design process and give instant feedback and suggestions
for the design. This would enable the designer to meet all
design requirements of the client with minimal physical
communication. Most of the ideas can be ex-changed through
the environment easily.

 3) Co-designer Collaboration.

In case of a webpage development where two co-designers
are working on the designing of the same web page
simultaneously may need to communicate in order to introduce
parallelism in the designing process thus reducing the
development time. Collaborative environment would help this
scenario by allowing simultaneous changes in the mutually

exclusive parts of the same web page at the same time
exchange of ideas is also encouraged.

 4) UI Expert and Backend Designer Collaboration.

Consider a case of a specialized designing team, there has to
be collaboration between the UI designer and the backend
designer to optimize the design. In such a case the interaction
between the backend designer and the lay out designer is
facilitated in which the UI design could be monitored by the
back end developer so that the interactions with the database
are efficient.

During the designing process when the two users

collaborate and if one user edits or changes any design
component on his work space the change is reflected
immediately on the interface of the other client module. This is
done by sending the changes that are done by one user to the
other client module through a common server, this updating
can be done at uniform intervals of time or can be done
whenever a change is made in the design by one user. This
collaboration can be enabled by a module which maintains a
“state” of the web page design that is being edited currently.
The “state” can include a list of elements that have been
currently added like for e.g. An image as well as the values of
all its properties such as positioning, layout, etc. This is
maintained using XML data islands at the client side.

This XML data can be processed using client side scripting.
Whenever one user makes a change in the GUI, the “state” is
updated according to the change. And vice versa whenever
there is a change in the “state”, the change is reflected in the
GUI or the “view” of the web page being edited. Thus to
implement a collaborative environment where the changes
made at one client module are reflected almost immediately at
the other module all that is needed is some way to
communicate the change of “state” at one client to the other.

This is done through the server. The change is first sent to
the server which in turn does the job of forwarding the change
and updating the “state” at the other client module. The same
kind of technique can be used to implement a Bi-Directional
“chat” functionality within the application which would
facilitate instant verbal communication. Fig.7. shows a series
of interactions and messages passed between the client and
server modules during collaboration.

E. Website Content Management and Publishing
It is used to manage and control a large, dynamic collection

of web material (documents and their associated components).
It facilitates document control, auditing, editing user web
pages and organizes information into a set of folders. Standard
visual templates can also be automatically applied to new and
existing content. When a user logs in, all data related to his
website created earlier like database, tables, webpage
information etc. is first downloaded and stored at client side.
When a user selects any particular web page, the code for that
page is downloaded and stored into DesignState which causes
it to be reflected on the GUI for editing which helps the user to
edit his web page and the code for that page gets modified
accordingly.

 Vol. 5, 74

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig.7. Collaboration Module

The user can also add new/remove pages and is given a

facility to manage entire navigation structure of his website by
editing the hyperlinks.

When the user finished creating his website and wants to
deploy it online, he just needs to click one button “Publish”.
When he does so the server side will automatically create the
files of his web pages as well as folders of the images,
JavaScript codes etc in his pages. This folder will be hosted on
our website by creating a sub domain under our URL. Thus
the user will have successfully created, designed and deployed
a website.

IV. CONCLUSION
In this paper we have discussed how our tool facilitates

creation of static and database-driven web applications with an
extremely simple and intuitive user interface. Even in the
presence of traditional web authoring tools, it has been found
that a naïve user unfamiliar with web markup and scripting
languages and database is not able to develop web applications
of his own. In our proposed solution he is aided in the
development process by a very easy to use interface along
with features like automatic code generation and database
design. The collaborative environment aids a system user in
the process of web page development where the
development takes place between the two users as mentioned
in the scenarios. We have in this paper described how a Rich
Internet Application providing following features can be
designed and deployed

 Rich WYSIWYG Environment.
 Drag and Drop facility.
 Automatic Code Generation.
 Automatic Database Creation and Normalization.
 Collaborative environment for Page Design.
 Website Content Management and Publishing.
 Ability to work offline.
 Immediate reflection of changes made.
 Website Preview and Deployment.

While some problems do exist with our application like
most RIA applications which take more time for loading into
the browser, also fully offline working ability is not supported
as new data has to be transferred periodically depending upon
the users tools demand.

The limitations of our application suggest a natural direction
for future work which includes enhanced performance,
adaptive normalization of database and simultaneous editing
during collaboration. Moreover, we plan to incorporate a
feature in which any webpage on the Internet can be imported
into the environment, edited as per the users wishes and saved.
This would facilitate a universal collaborative environment
over the Web where personalization, collaboration and on-the-
fly browsing/editing are possible.
 We believe that our proposal can be considered an
innovative step in the direction of this goal, providing a rich
environment where a user, can create, modify and customize
any type of web page. As required for a complete content
management, the application is completely independent form
any data format, editing tool and user skills.

V. REFERENCES

[1] A. Knapp, N. Koch, F. Moser and G. Zhang, “ArgoUWE: A Case Tool
for Web Applications”, Int. Workshop on Engineering Methods to
Support Information Systems Evolution, Geneva (Switzerland), Sept.
2003.

[2] C. Barry and; M. Lang, “A survey of multimedia and Web development
techniques and methodology usage”, IEEE Multimedia June 2001, vol. 8,
issue 2, - pp. 52-60.

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai and M. Matera,
Designing Data-Intensive Web Applications, Elsevier, Amsterdam
(Netherlands), 2002.

[4] J. Gómez, C. Cachero, and O. Pastor, “Extending a Conceptual
Modelling Approach to Web Application Design“, Int. Conf. on
Advanced Information Systems, Stockholm (Sweden), June 2000, LNCS
1789, pp. 79-93.

[5] M. Driver, R. Valdes, and G. Phifer. Rich Internet Applications Are the
Next Evolution of the Web. Technical report, Gartner, May 2005.

[6] J. Duhl. White paper: Rich Internet Applications. Technical report, IDC,
November 2003

 Vol. 5, 75

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

VI. BIOGRAPHIES

Deven Shah is professor in IT Dept; S.P.College
of engineering, Mumbai. He is currently pursuing
PhD from NIT, Surat.
(E-mail: devenshahin@yahoo.com)

Manas Apte is student of Fourth Year Information
Technology Engg. at S.P.College of engineering,
Mumbai.
(E-mail: manasapte@gmail.com)

Shrikant Goswami is student of Fourth Year
Information Technology Engg. at S.P.College of
engineering, Mumbai.
(E-mail: shrikant.goswami@gmail.com)

Sahil Shirodkar is a student of Fourth Year
Information Technology Engineering at S.P College
of Engineering, Mumbai. (Email:
s20sahil@gmail.com)

 Ajit Padukone is student of Fourth Year Information
Technology Engg. at S.P.College of engineering,
Mumbai.
(E-mail: aj.it.engg@gmail.com)

 Vol. 5, 76

