
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract-- A temporal association rule is an association rule

that holds during specific time interval. An example is that bread
and butter are frequently sold together in morning hours. In real
world data the knowledge used for mining rule is almost time
varying. Most of the popular temporal association rule mining
methods are having performance bottleneck for database with
different characteristics. Method like Temporal-Apriori takes
more time to generate frequent patterns in Association rule
mining. This problem is mainly related to the number of
operations required for counting pattern supports in the
database. To remedy this, we propose an algorithm Temporal-
PASCAL (TPASCAL) to discover calendar –based temporal
association Rules.

The TPASCAL uses Pattern counting inference that minimize
as much as possible the number of pattern support counts
performed when extracting frequent patterns. It is based on the
notion of key patterns, where a key pattern is minimal pattern of
equivalence class gathering all patterns common to the same
objects of the database relation. With pattern counting inference,
only the supports of the frequent key patterns (and some
infrequent ones) are determined from the database, while
supports of the frequent non key pattern are derived from those
of the frequent key patterns. To restrict the time based
assocationship calendar based pattern can be used. A calendar
unit such as months and days, clock unit, such as hours and
seconds & specialized units, such as business days and academic
years, play a major role in a wide range of information system
applications . This algorithm is based on the level wise extraction
of frequent patterns. The performance is evaluated by
comparing the efficiency of TPASCAL with the Temporal -
Apriori algorithm.

Index Terms--Counting Inference, Key-Pattern, Support,
Calender Schema, Apriori, Temporal Apriori, Frequent Pattern,
Temporal Assocation Rule.

I. INTRODUCTION

he problem of the discovery of association rules (AR)
comes from the need to discover patterns in transaction
data in a supermarket. But transaction data are temporal.

For example, when gathering data about products purchased

This work was supported in part by the RGTU University and Bansal
Group Bhaopal.es:

Niket Bhargava is with BIST College, District Bhopal, State MP, India
(e-mail: nikresearch@rediffmail.com).

Anjana Pandey is with RGTU University, District Bhopal, State MP,
India (e-mail: apeeshukla@yahoo.com).

Kamal Raj Pardasani is with MANIT, District Bhopal, State MP, India
(e-mail: kamalrajp@hotmail.com).

in a supermarket, the time of the purchase is registered in the
transaction. This is called transaction time, in temporal
database jargon, which matches the valid time, corresponding
to the time of the business transaction. The notion of
association rule was proposed to capture the co occurrence of
items in transaction [1]. Association Rule (AR) is the rule
that expresses associative relationship between two item sets
and denoted by X => Y (Bread => Jelly). Two important
concepts in AR are support and confidence.

Definition 1.1. AR X => Y has support s %, if at least s %
of transactions in the database (DB) contain X and Y.

Definition 1.2. AR X => Y has confidence c %, if at least c
% of transactions in DB that contain X also contain Y.

Example1.1. A grocery store retailer is trying to decide
whether to put bread on sale. To help determine the impact of
this decision, the retailer generates association rules that show
what other products are frequently purchased with bread. He
finds that 60% of the time that bread is sold so is pretzels and
that 70% of the time jelly is also sold, that may be denoted:

Bread => Pretzels (with confidence = 0.6) and Bread=>
Jelly (with confidence = 0.7).

Based on these facts, he tries to capitalize on the
association between bread, pretzels and jelly by placing some
pretzels and jelly at the end of the aisle where the bread is
placed. In addition, he decides not to place either of these
items on sale at the same time

 An interesting extension to association rules is to include
a temporal dimension. For example, if we look at a database
of transactions in a supermarket, we may find that sweets and
crackers are seldom sold together. However, if we only look
at the transactions in the week before diwali, we may discover
that most transactions contain sweets and crackers, i.e., the
association rule “sweets->crackers” has a high support and a
high confidence in the transactions that happen in the week
before diwali. The above suggests that we may discover
different association rules if different time intervals are
considered. Informally, we refer to the association rules along
with their temporal intervals as temporal association rules. In
this paper, we use calendar schema[2] as frameworks to
discover temporal association rules. A hierarchy of calendar
units determines a calendar schema. For example, a calendar
schema can be (year, month, day). A calendar schema defines
a set of simple calendar-based patterns (or calendar patterns
for short). For example, given the above calendar schema, we
will have calendar patterns such as every day of January of

Counting Inference Approach to Discover
Calendar based Temporal Association Rules

Anjana Pandey, Niket Bhargava and K.R.Pardasani

T

 Vol. 5, 77

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

1999 and every 16th day of January of every year. Basically, a
calendar pattern is formed for a calendar schema by fixing
some of the calendar units to specific numbers while leaving
other units “free” (so it’s read as “every”). It is clear that each
calendar pattern defines a set of time intervals. We assume
that the transactions are time stamped so we can decide if a
transaction happens during a specific time interval. Given a
set of transactions and a calendar schema, our first interest is
to discover all pairs of association rule and calendar pattern
such that for each pair (r; e), the association rule r satisfies the
minimum support and confidence constraint among all the
transactions that happen during each time interval given by
the calendar pattern e. For example, we may have an
association rule sweets-> crackers along with the calendar
pattern every day in every November. We call the resulting
rules temporal association rules w.r.t. Precise match[2]. In
some applications, the above temporal association rules may
be too restrictive. Instead, we may require that the association
rule hold during “enough” number of intervals given by the
corresponding calendar pattern. For example, the association
rule sweets-> crackers may not hold on every day of every
November, but holds on more than 80% of November days.
We call such rules temporal association rules w.r.t. Fuzzy
match[2].

 The rest of the paper is organized as follows. The next
section defines related work on discovery of association rules,
temporal data mining in general and discovery of temporal
rules in temporal database. In particular is given in section
2.Section 3 defines temporal association rule in terms of
calendar patterns. The TPASCAL algorithm is described in
section 4 and example is described in section 5.A summary of
the paper and some perspectives are given in section 6.

II. RELATED WORK
The concept of association rule was introduced as Apriori

algorithm [3]. Three approaches have been proposed for
mining frequent patterns: the first is traversing iteratively the
set of all patterns in a levelwise manner [4]. The most
prominent algorithm based on this approach is the Apriori
algorithm [5], that uses identical property as the OCD
algorithm [6] proposed currently. A variety of modification of
this algorithm arose [7] in order to improve different
efficiency aspects. However, all of these algorithms have to
determine the supports of all frequent patterns and some
infrequent ones from the database. The second approach is
based on the extraction of maximal frequent patterns, from
which all supersets are infrequent and all subsets are frequent.

The most prominent algorithm using this approach is Max-
Miner [8]. The third approach, represented by the Close
algorithm [9],is based on the theoretical framework
introduced in [9] that uses the closure of the Galois
connection[10].In paper [11] the omission of the time
dimension in association rule was very clearly mentioned. A
temporal aspect of association rule was given by Juan [12].
According to this transaction in the database are time stamped

and time interval is specified by the user to divide the data
into disjoint segments, like month, days and years. Further the
cyclic association rule was introduced by ozden [13] with
minimum support and high confidence. A nice bibliographic
of temporal data mining can be found in the Roddick literature
[14]. Rainsford & Roddick presented extension to association
rules to accommodate temporal semantics. It can be used in
point based and interval based model of time simultaneously
[14].

III. PROBLEM FORMULATION

A. .Key patterns and pattern Counting Inference
Definition 1. Let P be a finite set of items, O a finite set of

objects (e.g., transaction ids) and R⊆O × P a binary relation
(where (o, p) ε R may be read as “item p is included in
transaction o”).The triple D=(O, P, R) is called dataset [15].

Each subset p of P is called a pattern. We say that a
Pattern P is included in an object o ε O if (o,p) ε R for all p ε
P[].Let f be the function which assign to each pattern p⊆P the
set of all objects which include this pattern :f(P) = { o ε O| o
includes P }. The support of a pattern P is given by supp (P)
= card (f (P))/card (O). For a given threshold minsup ε[0,1], a
pattern P is called frequent pattern if supp(P)≥ minsup.

Definition 2.A K- pattern p is a subset of P with card (P)
= K .A candidate K-pattern where all its proper sub-patterns
are frequent. [15]

Definition 3.For patterns P, Q ⊆ P let PθQ if and only if f
(P) =f (Q) .the set of patterns which are equivalent to a pattern
P is given by [P] = {Q ⊆ P | Pθ Q}[15]

Definition 4 A pattern P is a key pattern if P ε min [P]. A
candidate key pattern is a pattern where all its proper sub
patterns are frequent key patterns.

Theorem 1(i) if Q is a key pattern and P ⊆ Q ,then P is
also a key pattern.(ii) if P is not a key pattern and ,P ⊆ Q then
Q is not a key pattern either.[15]

Theorem 2.Let P be a pattern.(i) Let pε P .then P ε [P \{p}]
if and only if supp(P)= supp(P\ {p})

(ii) P is a key pattern if and only if supp(P) ≠ min pε P

(supp(P\{p})) [15]
Theorem 3 Let P is a non key pattern then supp(P)= min pε

P (supp(P\{p})) [15]

B. Simple Calendar-based Pattern
When temporal information is applied in terms of date,

month, year & week form the term Calendar schema. it is
introduced in temporal data mining. A calendar schema is a
relational Schema R =(Gn : Dn,Gn-1 : Dn-1,……, G1 : D1)
together with a valid constraint[2]. Each attribute Gi is a
granularity name like year, month and week. Each domain Di
is a finite subset of the Positive integers. A calendar schema
(year: {2007,2006….}, month: 1,2,3,4…12},
day{1,2,3…..31}) with the constraints is valid if that
evaluates(yy,mm,dd) to true only If the combination gives a

 Vol. 5, 78

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

valid date while <1996,2,31> is not .In calendar pattern, the
branch e cover e’ in the same Calendar schema if the time
interval e’ is the subset of e and they all follow the same
pattern. If a calendar patterns <dn,dn-1,…..d1> covers another
pattern <d’n,d’n-1,…..d’1> if and only if for each I,1<=I<=n or
di = d’I .Now our task is to mine frequent pattern over arbitrary
time interval in terms of calendar pattern schema.

C. Temporal Association rule
Definition 1: The frequency of itemset over a time period T

is the number of transactions in which it occurs divided by
total number of transaction over a time period. In the same
way, confidence of an item with another item is the
transaction of both items over the period divided by first item
of that period [9]. Support (A)= Frequency of occurrence of A
in specified time interval / total no of tuples in Specified time
interval.

Confidence (A=>B [Ts, Te]) = Support count (A ∪B) over
interval /occurrence of A in interval. Ts indicates the valid
start time & Te indicate valid time according to temporal data

IV. OUR METHOD
Mining temporal association rules can be decomposed into

two steps: (1) finding all Frequent item sets for all star
calendar patterns on the given calendar schema, and (2)
generating Temporal association rules using the frequent item
sets and their calendar pattern. The first step is the crux of the
discovery of temporal association rule; in the following, we
will focus on this problem.

The pseudo-code is given in algorithm 1.we apply the
theorems given in the last section into an algorithm. A list of
notations is provided in table 1.we assume that P is linearly
ordered e.g , P = {1,…..,n}.This will be used in TPASCAL –
GEN.The algorithm starts with the empty set, which always
has a support of 1 and which is (by definition) a key pattern
(step 1 and 2). The algorithm work in passes. In each pass, the
basic time intervals in the calendar schema are processed one
by one. During the processing of basic time interval e0 in pass
k, the set of frequent K-itemset Pk (e0) is first computed, and
then Pk (e0) is used to update the large k itemsets for all the
calendar patterns that cover e0 .In first pass (step 4)we
compute the frequent 1-itemsets for each basic time interval.
They are marked as key patterns unless their support is 1(steps
5-7).The main loop is similar to the one in Apriori.(step
10….) .In the subsequent passes, we divide the processing of
each basic time interval into three phases. Phase 1,TPASCAL-
GEN is called to compute the candidate patterns for the basic
time interval. Phase II reads the transaction whose timestamps
are covered by the basic time interval, updates the support of
the candidate frequent Itemsets, and discover frequent
itemsets for this basic time interval. The support of key ones
is determined via a database pass (steps 15-20).Then (steps
21-27) the ‘traditional pruning (step 22) is done. At the same
time, for all remaining candidate key patterns, It is determined
whether they are key or not(step 23 and 24). Now let us

explain phase III. After the basic time interval e0 is processed
in pass k ,the large K-itemset for all the calendar patterns that
cover e0 are updated as follows. for precise match ,this is done
by intersecting the set Pk(e0) of frequent k itemset for the
calendar pattern e(i.e., Pk(e) = Pk(e) ∩ Pk(e0)). (Certainly,
Pk(e) = Pk(e0) when Pk(e) is updated for the first time.).it is
easy to see that after all the basic time interval are processed,
the set of frequent k-itemset for each calendar pattern consist
of the k-itemset that are frequent for all basic time intervals
covered by the pattern. The way TPASCAL-GEN operates is
basically known from the generator function Apriori-Gen
which was introduced in [15].when called at the Kth iteration
,it uses as input the set of frequent (K-1) patterns PK-1. its
output is the set of candidate K –patterns. in addition to
Apriori-Gen’s join and prune steps, TPASCAL-Gen makes
the new candidate inherit the fact of being or not a candidate
key pattern (step 9) by using Theorem 2; and it determines at
the same time the support of all non key candidate patterns
(step 12) by using theorem 4

TABLE 1
NOTATION USED IN TPASCAL

K

Is the counter which indicates the current
iteration. In the Kth iteration all frequent
K-patterns and all key patterns among them
are determined.

Pk

Contains after the Kth iteration all frequent
k patterns P together with their support
P.supp, and a boolean variable P.key
indicating if P is a (candidate) key pattern

Ck

Stores the candidate k patterns together
with their support (if Known),the Boolean
variable P.key and a counter P.pred_supp
which stores the minimum of the supports
of all (k-1) sub patterns of P

 The proposed algorithm is as follows,

A. Algorithm TPASCAL:
1) φ.supp ← 1 ; φ.Key ← true ;
2) P0 ←{∅}
3) For all basic time interval e0 do begin
4) P1 (e0) ← { frequent 1 pattern in T[e0]}
5) For all p∈ P1(e0) do begin
6) p.pred_suppp ← 1 ;p.Key ← (p.supp ≠1) ;
7) end;

for all star pattern e that cover e0 do
8) update P1 (e) using P(e0) ;
9) end
10) for (k=2 ; ∃ a star calendar pattern e such that Pk-

1 (e) ≠ Φ,K++) do begin
11) for all basic time interval e0 do begin

// Phase I: generate candidates

 Vol. 5, 79

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

12) Ck(e0) ← TPASCAL-Gen(Pk-1(e0))
// Phase II: Scan the transactions

13) For all transaction T ∈ T[e0] do
14) If ∃ C ∈ Ck(e0) | C.key then
15) For all o ∈ D do begin
16) C0 ← Subset (Ck(e0) ,O, T) // C.count ++ if

// c∈ Ck (e0) is contained in T
17) for all C∈ C0 | C.Key do
18) c.supp ++
19) end ;
20) for all c ∈ Ck(e0) do
21) if c.supp ≥ minsup then begin
22) if c.key and c.supp = c.pred_supp then
23) c.key ← False ;
24) Pk (e0) ← Pk (e0) ∪ {c }
25) End

// Phase III : update for star calendar patterns

26) for all star pattern e that cover e0 do
27) update Pk (e) using Pk (e0)
28) end
29) Output <Pk (e), e> for all star calendar pattern e
30) End

B. Algorithm 2 TPASCAL-GEN
Input : Pk-1(e0) , the set of frequent (K-1) patterns p with their
support p.supp and the p.key flag.

Output: Ck(e0) ,the set of candidate k patterns c each with the
flag c.key,the value c.pred_supp,and the support c.supp if c is
not a key pattern

1) insert into Ck(e0) select p.item1 ,p.item2
,……p.itemk-1,q.itemk-1
from Pk-1 p, Pk-1 q
Where p.item1 = q.item1, ……. p.itemk-2 =
q.itemk-2, p.itemk-1 < q.itemk-1;

2) for all c ε Ck(e0) do begin
3) c.key ←true ; c.pred_supp ← +∞ ;
4) for all (k-1) subsets s of c do begin
5) if s ∉ Pk-1(e0) then
6) delete c from Ck(e0) ;
7) else begin
8) c.pred_supp ← min(c.pred_supp,s.supp);
9) if not s.key then c.key ←false ;
10) end;
11) end;
12) if not c.key then c.supp ←c.pred_supp;
13) end;
14) return Ck(e0)

V. THE RUNNING EXAMPLE
We illustrate the TPASCAL algorithm on the following

dataset for minsup=2/5, and threshold temporal support=3
on Month attribute of the calendar supporting transaction
Database. The sample dataset is see Table 2,

TABLE 2
SAMPLE DATASET

Timesta
mp(Mont
h)

TransactionId Items

1 Txnnb200719 A,C,D,F
2 Txnnb200720 B,C,E,F
3 Txnnb200721 A,B,C,E,F
4 Txnnb200722 B,E,F
5 Txnnb200723 A,B,C,E,F

The algorithm performs first one database pass to count the

support of the 1-itemset pattern (key and nonkey both), than
checked for lifespan temporal support. The candidate pattern
{D} is pruned because it is infrequent. Also {F} is marked as
nonkey because it has the same support as empty set: Now P1
is see Table 3,

TABLE 3

FREQUENT (KEY & NON-KEY) 1-ITEMSET WITH SUPPORT AND LIFESPAN

P1 supp Key LifeSpan
A 3/5 T [1,5]
B 4/5 T [2,5]
C 4/5 T [1,5]
E 4/5 T [2,5]
F 1 F [1,5]

At the next iteration, all candidate 2-itemset patterns are
created and stored in C2, key and nonkey elements are
categorized and lifespan is evaluated. at the same time the
support of pattern containing infrequent pattern {F} as
sub-pattern is computed. Then a database pass is performed
to determine the support of the remaining six candidate
patterns and then the life span temporal support is validated
against temporal support threshold hence P2 achieved: Now
C2 is see Table 4

TABLE 4
CANDIDATE (KEY & NON-KEY) 2-ITEMSET WITH SUPPORT AND LIFESPAN

C2 pred_supp Key supp LifeSpan
AB 3/5 T ? [2,5]
AC 3/5 T ? [1,5]
AE 4/5 T ? [2,5]
AF 3/5 F 3/5 [1,5]
BC 4/5 T ? [2,5]
BE 4/5 T ? [2,5]
BF 4/5 F ? [2,5]
CE 4/5 T ? [2,5]
CF 4/5 F ? [1,5]
EF 4/5 F ? [2,5]

From this we have Now P2 is see Table 5,

 Vol. 5, 80

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

TABLE 5
FREQUENT (KEY & NON-KEY) 2-ITEMSET WITH SUPPORT AND LFESPAN

P2 supp LifeSpan Key
AB 2/5 [2,5] T
AC 3/5 [1,5] F
AE 2/5 [2,5] T
AF 3/5 [1,5] F
BC 3/5 [2,5] T
BE 4/5 [2,5] F
BF 4/5 [2,5] F
CE 3/5 [2,5] T
CF 4/5 [1,5] F
EF 4/5 [2,5] F

Repeating again we have Now C3 is see Table 6,

TABLE 6

CANDIDATE (KEY & NON-KEY) 3-ITEMSET WITH SUPPORT AND LIFESPAN

C3 pred_supp Key supp LifeSpan
ABF 2/5 F 2/5 [2,5]
ABC 2/5 F 2/5 [2,5]
ABE 2/5 F 2/5 [2,5]
ACE 2/5 F 2/5 [2,5]
ACF 3/5 F 3/5 [1,5]
AEF 2/5 F 2/5 [2,5]
BCE 3/5 F 3/5 [2,5]
BCF 3/5 F 3/5 [2,5]
BEF 4/5 F 4/5 [2,5]
CEF 3/5 F 3/5 [2,5]

And Now P3 is evaluated as see Table 7,

TABLE 7

FREQUENT (KEY & NON-KEY) 3-ITEMSET WITH SUPPORT AND LIFESPAN

P3 Supp Key LifeSpan
ABF 2/5 F [2,5]
ABC 2/5 F [2,5]
ABE 2/5 F [2,5]
ACE 2/5 F [2,5]
ACF 3/5 F [1,5]
AEF 2/5 F [2,5]
BCE 3/5 F [2,5]
BCF 3/5 F [2,5]
BEF 4/5 F [2,5]
CEF 3/5 F [2,5]

So now in 4th and 5th iteration no database scan is required

as we have no key candidate to calculate support in database.
Now C4 is see Table 8,

TABLE 8
CANDIDATE (KEY & NON-KEY) 4-ITEMSET WITH SUPPORT AND LIFESPAN

C4 pred_supp Key supp LifeSpan
ABCE 2/5 F 2/5 [2,5]
ABCF 2/5 F 2/5 [2,5]
ABEF 2/5 F 2/5 [2,5]
ACEF 2/5 F 2/5 [2,5]
BCEF 3/5 F 3/5 [2,5]

Now P4 is see Table 9,

TABLE 9
FREQUENT (KEY & NON-KEY) 4-ITEMSET WITH SUPPORT AND LIFESPAN

P4 supp Key LifeSpan
ABCE 2/5 F [2,5]
ABCF 2/5 F [2,5]
ABEF 2/5 F [2,5]
ACEF 2/5 F [2,5]
BCEF 3/5 F [2,5]

We have Now C5 is see Table 10,

TABLE 10
CANDIDATE (KEY & NON-KEY) 5-ITEMSET WITH SUPPORT AND LIFESPAN

C5 pred_supp Key supp LifeSpan
ABCEF 2/5 F 2/5 [2,5]

Now P5 is see Table 11,

TABLE 11
FREQUENT (KEY & NON-KEY) 5-ITEMSET WITH SUPPORT AND LIFESPAN

P5 pred_supp Key supp LifeSpan
ABCEF 2/5 F 2/5 [2,5]

In next iteration algorithm generate no new 6-itemset

candidate pattern so it stops here. Hence TPASCAL needs
two database passes in which the algorithm counted the
support of 6+6=12 patterns. Temporal-Apriori would have
needed five database passes for counting supports of
6+6+10+10+5+1=32 patterns for the same dataset.

VI. CONCLUSION
We presented a new algorithm, called TPASCAL,for

efficiently extracting frequent pattern in large database with
time constraints such as calendar pattern .We are comparing
the performance of our method with that of the “Temporal
Apriori” algorithm proposed in [9] by running it manually.
We will evaluate and compare the performance of this
combination of algorithm on several four synthetic datasets,
T20I6D100K, T25I10D10K and T25I20D100K that mimic
market basket data. Next we are planning to develop an
algorithm that can also incorporate confidence.

VII. REFERENCE
[1]]M.H.Dunham. Data Mining: Introductory and Advanced Topics.

Prentice Hall, 2003.
[2] Y Li, P Ning, XS Wang, S Jajodia “ Discovering calendar- based

temporal association rule “Data & Knowledge Engineering, 2003 -
Elsevier

[3] Jian Pei ,jiawei Han,Yiwen Yin and Running Mao R :Mining frequent
pattern without Candidate Generation Kluwer online Academy 2004

[4] Banu ozden ,Sridhar Ramaswamy ,Avi sliberschatz R:”cyclic assocation
rule “ In Proc. Of forteenth International conference on Data
Engineering 1998 pp 412-425

[5] Claudio Bettini ,Xsean Wang R “ Time Granularies in database,data
mining and temporal reasoning 2000 pp 230 ISBN 3-540-66997-3
Springer –verlang july 2000 230 pages Monograph

[6] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. of the 20th Int’l Conference on Very Large Databases, Santiago,
Chile, September 1994.

 Vol. 5, 81

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

[7] Jiawai Han,Micheline Kamber, Book:”Data mining Concept &

techniques “ 2001
[8] J Pei, J Han, H Lu, S Nishio, S Tang, D Yang “H-Mine: Hyper-

Structure Mining of Frequent Patterns in Large Databases “Proc. of the
2001 IEEE ICDM Conf

[9] JM Ale, GH Rossi “AN APPROACH TO DISCOVERING
TEMPORAL ASSOCIATION RULES Proceedings of the 2000 ACM
symposium on Applied computing- 2000

[10] Ramaswamy, S Mahajan, A Silberschatz” On the Discovery of
Interesting Patterns in Association Rules” Proceedings of the 24rd
International Conference on Very …, 1998

[11] CP Rainsford, JF Roddick” Adding Temporal Semantics to Association
Rules” Proceedings of the 3rd European Conference on Principles of –
Springer

[12] C Giannella, J Han, J Pei, X Yan, PS Yu” mining frequent pattern in
data stream at multiple time granularities” Next Generation Data
Mining, 2003

[13] Banu ozden ,Sridhar Ramaswamy ,Avi sliberschatz R:”cyclic assocation
rule “ In Proc. Of forteenth International conference on Data
Engineering 1998 pp 412-425

[14] JF Roddick, K Hornsby, M Spiliopoulou” An Updated Bibliography of
Temporal, Spatial, and Spatio-temporal Data Mining Research” First …,
2001 - books.google.com

[15] Bastide, R Taouil, N Pasquier, G Stumme, “Levelwise Search of
Frequent Patterns with Counting Inference “ACM SIGKDD
Explorations Newsletter, 2000

VIII. BIOGRAPHIES

Niket Bhargava, born in Bohani, state is MP in the
India, on July 6, 1978. He graduated from the
Oriental Institute of Science And Technology,
Bhopal, and completed his Master in Technology
from the RGTU- the technical university of MP,
India. MP stands for Madhya Pradesh. His
employment experience included the 4 year as
Teacher in Top Most Ranking Institutions of state of
MP, India. His special fields of interest included

analysis and application of algorithms and Intelligent Expert System for
Medical Treatment. Presently working as Assistant Professor in Department
of CSE at Bansal Institute of Science and Technology, Bhopal. He is also in-
charge of MTech in CSE.Bhaargava presented 3 papers in national and
international conferences.

Anjana Pandey, born on Dec’18, 1978. She
completed her Master in Computer Application. Her
special fields of interest included Datamining.
Presently working in Department of CSE at UIT-
RGTU, Bhopal. Presently she is persuing PhD. In
CSE from MANIT, Bhopal.

K..R.Pardasani was born on 13th September 1960 at
Mathure, India. He completed his graduation, post
graduation and PhD (mathematics) from Jiwaji
university gwaliar India. his employment experience
includes Jiwaji university Gwaliar MDI, Gurgaon and
MANIT Bhopal India. Presently he is professor &
Head of mathematics at MANIT, Bhopal and his
current interest are data mining and computational
biology.

 Vol. 5, 82

