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Abstract-- A temporal association rule is an association rule 

that holds during specific time interval. An example is that bread 
and butter are frequently sold together in morning hours. In real 
world data the knowledge used for mining rule is almost time 
varying. Most of the popular temporal association rule mining 
methods are having performance bottleneck for database with 
different characteristics. Method like Temporal-Apriori takes 
more time to generate frequent patterns in Association rule 
mining. This problem is mainly related to the number of 
operations required for counting pattern supports in the 
database. To remedy this, we propose an algorithm Temporal-
PASCAL (TPASCAL) to discover calendar –based temporal 
association Rules.  

The TPASCAL uses Pattern counting inference that minimize 
as much as possible the number of pattern support counts 
performed when extracting frequent patterns.  It is based on the 
notion of key patterns, where a key pattern is minimal pattern of 
equivalence class gathering all patterns common to the same 
objects of the database relation. With pattern counting inference, 
only the supports of the frequent key patterns (and some 
infrequent ones) are determined from the database, while 
supports of the frequent non key pattern are derived from those 
of the frequent key patterns. To restrict the time based 
assocationship calendar based pattern can be used. A calendar 
unit such as months and days, clock unit, such as hours and 
seconds & specialized units, such as business days and academic 
years, play a major role in a wide range of information system 
applications . This algorithm is based on the level wise extraction 
of frequent patterns. The performance is evaluated by 
comparing the efficiency of TPASCAL with the Temporal -
Apriori algorithm. 
 

Index Terms--Counting Inference, Key-Pattern, Support, 
Calender Schema, Apriori, Temporal Apriori, Frequent Pattern, 
Temporal Assocation Rule. 

I.  INTRODUCTION 

he problem of the discovery of association rules (AR) 
comes from the need to discover patterns in transaction 
data in a supermarket. But transaction data are temporal. 

For example, when gathering data about products purchased  
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in a supermarket, the time of the purchase is registered in the 
transaction. This is called transaction time, in temporal 
database jargon, which matches the valid time, corresponding 
to the time of the business transaction. The notion of 
association rule was proposed to capture the co occurrence of 
items in transaction [1].  Association Rule (AR) is the rule 
that expresses associative relationship between two item sets 
and denoted by X => Y (Bread => Jelly). Two important 
concepts in AR are support and confidence. 

Definition 1.1. AR X => Y has support s %, if at least s % 
of transactions in the database (DB) contain X and Y. 

Definition 1.2. AR X => Y has confidence c %, if at least c 
% of transactions in DB that contain X also contain Y. 

Example1.1. A grocery store retailer is trying to decide 
whether to put bread on sale. To help determine the impact of 
this decision, the retailer generates association rules that show 
what other products are frequently purchased with bread. He 
finds that 60% of the time that bread is sold so is pretzels and 
that 70% of the time jelly is also sold, that may be denoted: 

Bread => Pretzels (with confidence = 0.6) and Bread=> 
Jelly (with confidence = 0.7). 

Based on these facts, he tries to capitalize on the 
association between bread, pretzels and jelly by placing some 
pretzels and jelly at the end of the aisle where the bread is 
placed. In addition, he decides not to place either of these 
items on sale at the same time 

 An interesting extension to association rules is to include 
a temporal dimension. For example, if we look at a database 
of transactions in a supermarket, we may find that sweets and 
crackers are seldom sold together. However, if we only look 
at the transactions in the week before diwali, we may discover 
that most transactions contain sweets and crackers, i.e., the 
association rule “sweets->crackers” has a high support and a 
high confidence in the transactions that happen in the week 
before diwali. The above suggests that we may discover 
different association rules if different time intervals are 
considered. Informally, we refer to the association rules along 
with their temporal intervals as temporal association rules. In 
this paper, we use calendar schema[2] as frameworks to 
discover temporal association rules. A hierarchy of calendar 
units determines a calendar schema. For example, a calendar 
schema can be (year, month, day). A calendar schema defines 
a set of simple calendar-based patterns (or calendar patterns 
for short). For example, given the above calendar schema, we 
will have calendar patterns such as every day of January of 
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1999 and every 16th day of January of every year. Basically, a 
calendar pattern is formed for a calendar schema by fixing 
some of the calendar units to specific numbers while leaving 
other units “free” (so it’s read as “every”). It is clear that each 
calendar pattern defines a set of time intervals. We assume 
that the transactions are time stamped so we can decide if a 
transaction happens during a specific time interval. Given a 
set of transactions and a calendar schema, our first interest is 
to discover all pairs of association rule and calendar pattern 
such that for each pair (r; e), the association rule r satisfies the 
minimum support and confidence constraint among all the 
transactions that happen during each time interval given by 
the calendar pattern e. For example, we may have an 
association rule sweets-> crackers along with the calendar 
pattern every day in every November. We call the resulting 
rules temporal association rules w.r.t. Precise match[2]. In 
some applications, the above temporal association rules may 
be too restrictive. Instead, we may require that the association 
rule hold during “enough” number of intervals given by the 
corresponding calendar pattern. For example, the association 
rule sweets-> crackers may not hold on every day of every 
November, but holds on more than 80% of November days. 
We call such rules temporal association rules w.r.t. Fuzzy 
match[2]. 

 The rest of the paper is organized as follows. The next 
section defines related work on discovery of association rules, 
temporal data mining in general and discovery of temporal 
rules in temporal database. In particular is given in section 
2.Section 3 defines temporal association rule in terms of 
calendar patterns. The TPASCAL algorithm is described in 
section 4 and example is described in section 5.A summary of 
the paper and some perspectives are given in section 6.  

II.  RELATED WORK 
The concept of association rule was introduced as Apriori 

algorithm [3]. Three approaches have been proposed for 
mining frequent patterns: the first is traversing iteratively the 
set of all patterns in a levelwise manner [4]. The most 
prominent algorithm based on this approach is the Apriori 
algorithm [5], that uses identical property as the OCD 
algorithm [6] proposed currently. A variety of modification of 
this algorithm arose [7] in order to improve different 
efficiency aspects. However, all of these algorithms have to 
determine the supports of all frequent patterns and some 
infrequent ones from the database. The second approach is 
based on the extraction of maximal frequent patterns, from 
which all supersets are infrequent and all subsets are frequent. 

The most prominent algorithm using this approach is Max-
Miner [8]. The third approach, represented by the Close 
algorithm [9],is based on the theoretical framework 
introduced in [9] that uses the closure of the Galois 
connection[10].In paper [11] the omission of the time 
dimension in association rule was very clearly mentioned. A 
temporal aspect of association rule was given by Juan [12]. 
According to this transaction in the database are time stamped 

and time interval is specified by the user to divide the data 
into disjoint segments, like month, days and years. Further the 
cyclic association rule was introduced by ozden [13] with 
minimum support and high confidence. A nice bibliographic 
of temporal data mining can be found in the Roddick literature 
[14]. Rainsford & Roddick presented extension to association 
rules to accommodate temporal semantics. It can be used in 
point based and interval based model of time simultaneously 
[14]. 

III.  PROBLEM FORMULATION  

A.  .Key patterns and pattern Counting Inference 
Definition 1. Let P be a finite set of items, O a finite set of 

objects (e.g., transaction ids) and  R⊆O × P a binary relation 
(where (o, p) ε R may be read as “item p is included in 
transaction o”).The triple D=(O, P, R) is called dataset [15]. 

Each subset  p of P is called a pattern. We say that a 
Pattern P is included in an object o ε O if (o,p) ε  R for all p ε 
P[].Let f be the function which assign to each pattern p⊆P the  
set of all objects which include this pattern :f(P) = { o ε O| o 
includes P }. The support of a  pattern P is given by supp (P) 
= card (f (P))/card (O). For a given threshold minsup ε[0,1], a 
pattern P is called frequent pattern if supp(P)≥ minsup. 

Definition 2.A K- pattern p is a subset of   P with card (P) 
= K .A candidate K-pattern where all its proper sub-patterns 
are frequent. [15]       

Definition 3.For patterns P, Q ⊆ P   let PθQ if and only if f 
(P) =f (Q) .the set of patterns which are equivalent to a pattern 
P is given by [P] = {Q ⊆ P | Pθ Q}[15] 

Definition 4 A pattern P is a key pattern if P ε min [P]. A 
candidate key pattern is a pattern where all its proper sub 
patterns are frequent key patterns. 

Theorem 1(i ) if Q is a key  pattern and P ⊆ Q ,then P is 
also a key pattern.(ii) if P is not a key pattern and ,P ⊆ Q then 
Q is not a key pattern either.[15] 

Theorem 2.Let P be a pattern.(i) Let  pε P .then P ε [P \{p}] 
if and only if supp(P)= supp(P\ {p}) 

(ii) P is a key pattern if and only if supp(P) ≠ min pε P 

(supp(P\{p})) [15] 
Theorem 3 Let P is a non key pattern then supp(P)= min pε 

P (supp(P\{p})) [15] 
 

B.  Simple Calendar-based Pattern 
When temporal information is applied in terms of date, 

month, year & week form the term Calendar schema. it is 
introduced in temporal data mining. A calendar schema is a 
relational Schema R =( Gn : Dn,Gn-1 : Dn-1,……, G1 : D1) 
together  with a valid constraint[2]. Each attribute  Gi is a 
granularity name like year, month and week. Each domain Di 
is a finite subset of the Positive integers. A calendar schema 
(year: {2007,2006….}, month: 1,2,3,4…12}, 
day{1,2,3…..31}) with the constraints is valid if that 
evaluates(yy,mm,dd) to true only   If the combination gives a 
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valid date while <1996,2,31> is not .In calendar pattern, the 
branch e cover e’ in the same Calendar schema if the time 
interval e’ is the subset of e and they all follow the same 
pattern.  If a calendar patterns  <dn,dn-1,…..d1> covers another 
pattern  <d’n,d’n-1,…..d’1> if and only if for each I,1<=I<=n or 
di = d’I .Now our task is to mine frequent pattern over arbitrary 
time interval in terms of calendar pattern schema. 

C.  Temporal Association rule 
Definition 1: The frequency of itemset over a time period T 

is the number of transactions in which it occurs divided by 
total number of transaction over a time period. In the same 
way, confidence of an item with another item is the 
transaction of both items over the period divided by first item 
of that period [9]. Support (A)= Frequency of occurrence of A 
in specified time interval / total no of tuples in  Specified time 
interval. 

Confidence (A=>B [Ts, Te]) = Support count (A ∪B) over 
interval /occurrence of A in interval. Ts indicates the valid 
start time & Te indicate valid time according to temporal data  

IV.  OUR METHOD 
Mining temporal association rules can be decomposed into 

two steps: (1) finding all Frequent item sets for all star 
calendar patterns on the given calendar schema, and (2) 
generating Temporal association rules using the frequent item 
sets and their calendar pattern. The first step is the crux of the 
discovery of temporal association rule; in the following, we 
will focus on this problem. 

The pseudo-code is given in algorithm 1.we apply the 
theorems given in the last section into an algorithm. A list of 
notations is provided in table 1.we assume that P is linearly 
ordered e.g , P = {1,…..,n}.This will be used in TPASCAL –
GEN.The algorithm starts with the empty set, which always 
has a support of 1 and which is (by definition ) a key pattern 
(step 1 and 2). The algorithm work in passes. In each pass, the 
basic time intervals in the calendar schema are processed one 
by one. During the processing of basic time interval e0 in pass 
k, the set of frequent K-itemset Pk (e0 ) is first computed, and 
then Pk (e0 ) is used to update the large k itemsets for all the 
calendar patterns that cover e0 .In  first pass (step 4 )we 
compute the frequent 1-itemsets for each basic time interval. 
They are marked as key patterns unless their support is 1(steps 
5-7).The main loop is similar to the one in Apriori.(step 
10….) .In the subsequent passes, we divide the processing of 
each basic time interval into three phases. Phase 1,TPASCAL-
GEN is called to compute the candidate patterns for the basic 
time interval. Phase II reads the transaction whose timestamps 
are covered by the basic time interval, updates the support of 
the candidate frequent  Itemsets, and discover frequent 
itemsets for this basic time interval. The support of key ones 
is determined via a database pass (steps 15-20).Then (steps 
21-27) the ‘traditional pruning (step 22) is done. At the same 
time, for all remaining candidate key patterns, It is determined 
whether they are key or not( step 23 and 24). Now let us 

explain phase III. After the basic time interval e0 is processed 
in pass k ,the large K-itemset for all the calendar patterns that 
cover e0 are updated as follows. for precise match ,this is done 
by intersecting the set Pk(e0) of frequent  k itemset for the 
calendar pattern e(i.e., Pk(e) = Pk(e) ∩ Pk(e0) ). (Certainly, 
Pk(e) = Pk(e0) when Pk(e) is updated for the first time.).it is 
easy to see that after all the basic time interval are processed, 
the set of frequent k-itemset for each calendar pattern consist 
of the k-itemset that are frequent for all basic time intervals 
covered by the pattern. The way TPASCAL-GEN operates is 
basically known from the generator function Apriori-Gen 
which was introduced in [15].when called at the  Kth iteration 
,it uses as input the set of frequent (K-1) patterns PK-1. its 
output is the set of candidate K –patterns. in addition to 
Apriori-Gen’s join and prune steps, TPASCAL-Gen makes 
the new candidate inherit the fact of being or not a candidate 
key pattern (step 9) by using Theorem 2; and it determines at 
the same time the support of all non key candidate patterns 
(step 12) by using theorem 4 
 

TABLE 1 
NOTATION USED IN   TPASCAL 

 
 

K 
 

 
Is the counter which indicates the current 
iteration. In the Kth iteration all frequent 
K-patterns and all key patterns among them 
are determined. 
 

 
Pk 

Contains after the Kth iteration all frequent 
k patterns P together with their support 
P.supp, and a boolean variable P.key 
indicating if P is a (candidate) key pattern 

 
Ck 

Stores the candidate k patterns together 
with their support (if Known),the Boolean 
variable P.key and a counter P.pred_supp 
which stores the minimum of the supports 
of all (k-1) sub patterns of P  

 
    The proposed algorithm is as follows, 

A.   Algorithm TPASCAL: 
1) φ.supp ← 1 ; φ.Key ← true ; 
2) P0 ←{∅} 
3) For all basic time interval e0 do begin  
4) P1 (e0) ← { frequent 1 pattern  in T[e0]} 
5) For all p∈ P1(e0)   do begin 
6) p.pred_suppp ← 1 ;p.Key ← (p.supp ≠1) ; 
7) end; 

for all star pattern e that cover e0 do 
8) update P1 (e) using P(e0) ; 
9) end  
10) for (k=2 ; ∃ a star calendar pattern e such that Pk-

1 (e) ≠ Φ,K++) do begin 
11) for all basic time interval e0 do begin  

// Phase I: generate candidates 
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12) Ck(e0) ← TPASCAL-Gen(Pk-1(e0) )  
// Phase II: Scan the transactions 

13) For all transaction T ∈ T[e0]  do 
14) If  ∃ C ∈ Ck(e0)  | C.key then 
15) For all o ∈ D do begin 
16)  C0  ← Subset (Ck(e0 ) ,O, T) // C.count ++  if 

// c∈ Ck (e0)  is contained in T 
17) for all C∈ C0  | C.Key do 
18) c.supp ++ 
19) end ; 
20) for all c ∈ Ck(e0) do 
21) if c.supp ≥ minsup then begin 
22) if c.key and c.supp = c.pred_supp then 
23) c.key ← False ; 
24) Pk (e0) ← Pk (e0) ∪ {c } 
25) End 

// Phase III : update for star calendar patterns 
 
26) for all star pattern e that cover e0 do 
27) update Pk (e) using  Pk (e0) 
28) end 
29) Output <Pk (e), e> for all star calendar pattern e 
30) End 

 

B.   Algorithm 2 TPASCAL-GEN  
Input : Pk-1(e0) , the set of frequent (K-1) patterns p with their 
support p.supp and the p.key flag. 
 
Output: Ck(e0) ,the set of candidate k patterns c each with the 
flag c.key,the value c.pred_supp,and the support c.supp if c is 
not a key pattern 

1) insert into Ck(e0)  select p.item1 ,p.item2 
,……p.itemk-1,q.itemk-1 
from Pk-1 p, Pk-1 q  
Where p.item1 = q.item1, ……. p.itemk-2 = 
q.itemk-2, p.itemk-1 < q.itemk-1; 

2) for all  c  ε Ck(e0)  do begin 
3) c.key ←true ; c.pred_supp ← +∞ ; 
4) for all (k-1) subsets s of c do begin  
5) if s ∉ Pk-1(e0) then 
6) delete c from Ck(e0) ; 
7) else begin  
8) c.pred_supp ← min(c.pred_supp,s.supp); 
9) if not s.key then c.key ←false ; 
10) end; 
11) end; 
12) if not c.key then c.supp ←c.pred_supp; 
13) end; 
14) return Ck(e0) 

V.  THE RUNNING EXAMPLE 
We illustrate the TPASCAL algorithm on the following 

dataset for minsup=2/5, and threshold temporal support=3  
on Month attribute of the calendar supporting transaction  
Database. The sample dataset is see Table 2, 

 

TABLE  2 
SAMPLE  DATASET 

 
Timesta
mp(Mont
h) 

TransactionId Items 

1 Txnnb200719 A,C,D,F 
2 Txnnb200720 B,C,E,F 
3 Txnnb200721 A,B,C,E,F 
4 Txnnb200722 B,E,F 
5 Txnnb200723 A,B,C,E,F 

  
The algorithm performs first one database pass to count the 

support of the 1-itemset pattern (key and nonkey both), than 
checked for lifespan temporal support. The candidate pattern 
{D} is pruned because it is infrequent. Also {F} is marked as 
nonkey because it has the same support as empty set: Now P1 
is see Table 3, 

 
TABLE  3 

FREQUENT  (KEY & NON-KEY) 1-ITEMSET  WITH SUPPORT AND LIFESPAN 
 

P1 supp Key LifeSpan 
A 3/5 T [1,5] 
B 4/5 T [2,5] 
C 4/5 T [1,5] 
E 4/5 T [2,5] 
F 1 F [1,5] 

At the next iteration, all candidate 2-itemset patterns are 
created and stored in C2, key and nonkey elements are 
categorized and lifespan is evaluated. at the same time the 
support of pattern containing infrequent pattern {F} as 
sub-pattern is computed. Then a database pass is performed 
to determine  the support of the remaining six candidate 
patterns and then the life span temporal support is validated 
against temporal support threshold hence P2 achieved: Now 
C2 is see Table 4 

 
 
 
 

TABLE 4 
CANDIDATE  (KEY & NON-KEY) 2-ITEMSET  WITH SUPPORT AND LIFESPAN 

 
C2 pred_supp Key supp LifeSpan 
AB 3/5 T ? [2,5] 
AC 3/5 T ? [1,5] 
AE 4/5 T ? [2,5] 
AF 3/5 F 3/5 [1,5] 
BC 4/5 T ? [2,5] 
BE 4/5 T ? [2,5] 
BF 4/5 F ? [2,5] 
CE 4/5 T ? [2,5] 
CF 4/5 F ? [1,5] 
EF 4/5 F ? [2,5] 

 
From this we have Now P2 is see Table 5, 
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TABLE 5 
FREQUENT  (KEY & NON-KEY) 2-ITEMSET  WITH SUPPORT AND LFESPAN 

 
P2 supp LifeSpan Key 
AB 2/5 [2,5] T 
AC 3/5 [1,5] F 
AE 2/5 [2,5] T 
AF 3/5 [1,5] F 
BC 3/5 [2,5] T 
BE 4/5 [2,5] F 
BF 4/5 [2,5] F 
CE 3/5 [2,5] T 
CF 4/5 [1,5] F 
EF 4/5 [2,5] F 

 
Repeating again we have Now C3 is see Table 6, 

 
TABLE 6 

CANDIDATE  (KEY & NON-KEY) 3-ITEMSET  WITH SUPPORT AND LIFESPAN 
 

C3 pred_supp Key supp LifeSpan 
ABF 2/5 F 2/5 [2,5] 
ABC 2/5 F 2/5 [2,5] 
ABE 2/5 F 2/5 [2,5] 
ACE 2/5 F 2/5 [2,5] 
ACF 3/5 F 3/5 [1,5] 
AEF 2/5 F 2/5 [2,5] 
BCE 3/5 F 3/5 [2,5] 
BCF 3/5 F 3/5 [2,5] 
BEF 4/5 F 4/5 [2,5] 
CEF 3/5 F 3/5 [2,5] 

 
And Now P3 is evaluated as see Table 7,  

 
TABLE 7 

FREQUENT  (KEY & NON-KEY) 3-ITEMSET  WITH SUPPORT AND LIFESPAN 
 

P3 Supp Key LifeSpan 
ABF 2/5 F [2,5] 
ABC 2/5 F [2,5] 
ABE 2/5 F [2,5] 
ACE 2/5 F [2,5] 
ACF 3/5 F [1,5] 
AEF 2/5 F [2,5] 
BCE 3/5 F [2,5] 
BCF 3/5 F [2,5] 
BEF 4/5 F [2,5] 
CEF 3/5 F [2,5] 

 
So now in 4th and 5th iteration no database scan is required 

as we have no key candidate to calculate support in database. 
Now C4 is see Table 8, 

TABLE  8 
CANDIDATE  (KEY & NON-KEY) 4-ITEMSET  WITH SUPPORT AND LIFESPAN 

 
C4 pred_supp Key supp LifeSpan 
ABCE 2/5 F 2/5 [2,5] 
ABCF 2/5 F 2/5 [2,5] 
ABEF 2/5 F 2/5 [2,5] 
ACEF 2/5 F 2/5 [2,5] 
BCEF 3/5 F 3/5 [2,5] 

 
Now P4 is see Table 9, 
 
 
 

TABLE  9 
FREQUENT  (KEY & NON-KEY)  4-ITEMSET  WITH SUPPORT AND LIFESPAN 

 
P4 supp Key LifeSpan 
ABCE 2/5 F [2,5] 
ABCF 2/5 F [2,5] 
ABEF 2/5 F [2,5] 
ACEF 2/5 F [2,5] 
BCEF 3/5 F [2,5] 

 
We have Now C5 is see Table 10, 
 

TABLE 10 
CANDIDATE  (KEY & NON-KEY) 5-ITEMSET  WITH SUPPORT AND LIFESPAN 

 
C5 pred_supp Key supp LifeSpan 
ABCEF 2/5 F 2/5 [2,5] 

 
Now P5 is see Table 11, 
 

TABLE  11 
FREQUENT  (KEY & NON-KEY) 5-ITEMSET  WITH SUPPORT AND LIFESPAN 

 
P5 pred_supp Key supp LifeSpan 
ABCEF 2/5 F 2/5 [2,5] 

 
In next iteration algorithm generate no new 6-itemset 

candidate pattern so it stops here. Hence TPASCAL needs 
two database passes in which the algorithm counted the 
support  of 6+6=12 patterns. Temporal-Apriori would have 
needed five database passes  for counting supports of 
6+6+10+10+5+1=32 patterns for  the same dataset.  

VI.  CONCLUSION  
We presented a new algorithm, called TPASCAL,for 

efficiently extracting frequent pattern in large database with 
time constraints such as calendar pattern .We are comparing  
the performance of our method with that of the “Temporal 
Apriori” algorithm proposed in [9] by running it manually. 
We will evaluate and compare the performance of this 
combination of algorithm on several four synthetic datasets, 
T20I6D100K, T25I10D10K and T25I20D100K that mimic 
market basket data. Next we are planning to develop an 
algorithm that can also incorporate confidence. 
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