Vol. 2, 27

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Implementation of Miniature Embedded Server
With Nios Il Processor

Deepali Shelke , Jayu Kalambe and Meghana Hasamnis

Abstract-In general server is a software program that runs on
a computer and delivers web pages to a browser. The proposed
server can process basic requests to serve HTML, JPEG and GIF
files from the Altera read-only zip file system. It is an example of
HTTP server using lightweight internet protocol (LWIP) on
MicroC/OS-I1 platform, which uses a standard sockets interface.
The LWIP has two application program interface (API) i.e. a call
back interface and a standard sockets. In the board /host set up it
requires an Ethernet cable connected to the development board’s
RJ-45 jack and joint test action group (JTAG) connection with
the development board. If the host communication settings are
changed from default JTAG UART to a conventional UART then
a serial cable between board, DB-9 connector and the host is
required. If dynamic host configuration protocol (DHCP) is
available then the server will attempt to obtain an IP address
from DHCP server. Otherwise, a static IP address which is
defined in user.h file will be assigned after a 120 second time out.
The DHCP time out can be adjusted in telnet.h file. The server is
implemented on NIOS Il embedded processor. The Altera FPGA
is used to create a custom system-on-a-chip or, more accurately, a
system on-a-programmable-chip (SOPC). To run the server it is
required to program the file system, generated as filesys.flash
in<system library project>/ Release folder using flash program
utility of the NIOS-11 IDE (integrated development environment)

Keywords : Nios Il Processor, SOPC, MicroC/OS-11

I. INTRODUCTION

A web server is a software program that runs on a
computer and delivers web pages to a browser. The proposed
web server in the project is an example of HTTP server using
light weight internet protocol (LWIP) on MicroC/OS-II
platform. The web server can process basic requests to serve
HTML, JPEG and GIF files from the Altera read —only zip file
system. The LWIP has two application program interface
(API) i.e. a call back interface and a standard sockets. The
proposed web server is implemented on NIOS Il embedded
processor. The Nios Il processor is a general-purpose RISC
processor with embedded peripheral architecture.

The Nios Il processor system is equivalent to a micro
controller or *“computer on a chip” that includes in the
Quartus Il software and is available to all Altera customers. It
automates the task of integrating hardware components into a
larger system. It can specify the system components in a
graphical user interface (GUI), and generates the interconnect
logic automatically.

Ms. Deepali Shelke, Lecturer, S.R.K.N.E.C, Nagpur
Email:deepshelke@yahoo.co.in Mobile No.: 09881713176/70

Ms. Jayu Kalambe Lecturer, S.R.K.N.E.C, Nagpur
Email:jayu_kalambe@rediffmail.com Mobile No.: 09822462988
Ms. Meghana Hasamnis Lecturer, S.R.K.N.E.C, Nagpur
Email:meghanahasamnis@rediffmail.com Mobile No. : 09373284084

The purpose of the SOPC Builder GUI is to allow one to
easily define the structure of a hardware system and then
generate the system. The GUI is designed for the tasks of
adding components to a system, configuring the components
and specifying how they connect together.

To run the server it is required to program the file system,
generated as filesys.flash in<system library project>.
Release folder using flash program utility of the NIOS I
IDE integrated development environment. The Nios Il
integrated development environment (IDE) is the software
development GUI for the Nios Il processor. All software
development tasks can be accomplished within the Nios 11
IDE, including editing, building, and debugging programs.
The Nios Il IDE is the window through which all other tools
can be launched. The hardware abstraction layer (HAL)
system library provides a hosted C runtime environment
based on the ANSI C standard libraries. The HAL provides
generic 1/0O devices, allowing one to write programs that
access hardware using the C standard library routines, such
as prints(). The HAL minimizes or eliminates the need to
access hardware registers directly to control and
communicate with peripherals. [1]

By using Quartus Il software customized system design
is created that interfaces with the component provided on
NIOS Il development board. The whole system is realized
by IP cores provided by Altera. The database for web site is
created in flash memory through flash programmer. The
program is written in NIOS IDE using C/C++ language by
using NIOS drivers. [2]

Il. SYSTEM HARDWARE

The proposed web server system required following
hardware: The Nios Il Development Board, Cyclone Il
Edition. The following peripherals are used in system.
Ethernet MAC (hnamed “LAN91C111” in SOPC Builder)
STDOUT device (UART or JTAG UART) LCD Display
(named “lcd_display” in SOPC Builder) Board/Host
Requirements: The server requires an Ethernet cable
connected to the development board’s RJ-45 jack and a
JTAG connection with the development board. If the host
communication settings are changed from JTAG UART
(default) to use a conventional UART then a serial cable
between board DB-9 connector and the host is required.

Vol. 2, 28

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

A. Connecting to the Board via Ethernet:

The Nios Il development board is factory-programmed
with a reference design that implements a web server. The
Nios Il development kit includes an Ethernet (RJ45) cable and
a male/female RJ45 crossover adapter.

There are two methods for connecting to the board via
Ethernet, which are:

1).LAN Connection — to use Nios development board on a
LAN (for example, connecting to an Ethernet hub) do the
following:

a) Connect one end of the RJ45 cable to the Ethernet connector
on the development board (RJ1).

b) Connect the other end to LAN connection (hub, router, wall
plug, etc.).

2). Point-to-Point Connection — To use Nios development
board connected directly to a host computer point-to-point (not
on a LAN), do the following:

a) Connect one end of RJ45 cable to the female socket in the
crossover adapter and insert the male end of the crossover
adapter into RJ1 on the Nios development board as shown in
Figure 4.9

b) Connect the other end of the RJ45 connector directly to the
network (Ethernet) port on host computer.

B. Obtaining an IP Address:

In order to function on a network (either LAN or point-to-
point), the board must have an IP address. This section
describes the methods to assign an IP address to the board.

If board is connected to a LAN, then it will either obtain a
dynamic IP address using DHCP, or a static IP address stored
in flash memory. If it is not known whether or not LAN
supports DHCP, it is easiest to try DHCP first. Upon reset, the
web server attempts to acquire an IP address via the DHCP
protocol. The board continues to attempt DHCP self-
configuration for two minutes. One can determine if DHCP
has succeeded, or if it is still in progress, by reading status
messages on the LCD screen. If the LAN does not support
DHCP then DHCP configuration ultimately fails, and the web
server defaults to a static IP address.

If DHCP succeeds, the board displays a success message and
the IP address on the LCD screen. The web server is now
ready to display web pages. If the DHCP process fails, the
board uses a static IP address stored in flash memory.

C .Browsing to the Board:

Once the board has a valid IP address (obtained from either
DHCP self-configuration or from flash memory), it can be
accessed via a web browser (e.g., Microsoft Internet Explorer).
To browse to this site, open a web browser and type the IP
address of the board (four numbers separated by decimal-
points) as a URL directly into the browser’s Address input
field. One can determine the board’s IP address by reading the
messages displayed on the LCD screen.

I1l. SYSTEM CREATION

The SOPC Builder is a powerful system development
tool for creating systems based on processors, peripherals,
and memories. It enables one to define and generate a
complete system-on-a-programmable-chip in much less time
than using traditional, manual integration methods. It is
included in the Quartus Il software and is available to all
Altera customers. It automates the task of integrating
hardware components into a larger system. It can specify the
system components in a graphical user interface (GUI), and
generates the interconnect logic automatically. Fig 1 shows
Example of a System Module Generated by SOPC Builder

Ethernet
PHY
Chip
k
Sysiem Module !
Pﬂl!mﬂ" Ethernet MAC Custom Logic
(32-bit master {32-bit master (54-bit master
component) companent) component)

itch Fabric

Flash SRAM SDRAM UART Custom
Memory Inferface Controller (16-bit Logie
Interface (16-bit (32-bit slave (B4-bit

(8-bit slave slave slave e slave
component)| |component)| |companent) companent)

; 3 3 3

9 y y y

Flash SRAM SDRAM RS-232
Chip Chip Chip

Fig.1 Example of a System Module Generated by SOPC Builder

A. SOPC Builder Components:

SOPC Builder components are the building blocks of
the system module. It components use the Avalon interface
for the physical connection of components, it is use to
connect any logical device (either on-chip or off-chip) that
has an Avalon interface. The Avalon interface uses an
address-mapped read/write protocol that allows master
components to read and/or write any slave component.

Altera provide ready-to-use SOPC Builder components,
such as: Microprocessors, such as the Nios Il processor,
Micro controller peripherals, Timers, Serial communication
interfaces, such as a UART and a serial Peripheral interface
(SPI) ,General purpose 1/0 Digital signal processing (DSP)
functions Communications peripherals ,Interfaces to off-chip
devices ,Memory controllers buses and bridges ,application-
specific standard products (ASSP) ,application-specific
integrated circuits (ASIC) Processors.

Vol. 2, 29

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

B. User-Defined Components:

SOPC Builder provides an easy method to develop and
connect components. With the Avalon interface, user-defined
logic need only adhere to a simple interface based on address,
data, read-enable, and write-enable signals.[5]

The following design flow is use to integrate custom logic
into an SOPC Builder system:

1. Define the interface to the user-defined component.

2. If the component logic resides on-chip, write HDL files
describing the component in either Verilog HDL or VHDL.

3. Use the SOPC Builder component editor wizard to specify
the interface and optionally package HDL files into an SOPC
Builder component.

4. Instantiate all component in the same manner as other SOPC
Builder Ready components.

C. Location of the Component Hardware:

There are two types of components, based on where the
associated component logic resides:

Components that include their associated logic inside the
system module & components that interface to logic outside
the system module

Aualon Interfaca

(Automatically sonretsd
/ by SOPC Buikler)

System Module
Application-
Spacfic
Intarfacs
Signals
Extemal Sinels
Lo:x: | Unrslated
OfiChi ¢ 10 S0P
Dovee || Bk

Avalon Interface
(Manuslly corrected
Ly system dasignar)

Fig .2 Component Logic Inside and Outside the System Module
D. Components that include logic inside the System Module:

In this case, the component files provide a full description
of the component hardware. During system generation, SOPC
Builder instantiates the component logic inside the system
module and automatically wires the component to the rest of
the system. Internal to the system module, the component
connects to the rest of the system through its Avalon interface.
The component can also have non-Avalon signals that SOPC
Builder exposes on the top-level system module.

E. Components that Interface to Logic outside the System
Module:

In this case, the component files describe only the
interface to logic external to the system module. During
system generation, SOPC Builder does not instantiate any
logic for this component. Instead, SOPC Builder exposes an
Avalon interface for this component on the top-level system
module. One must manually wire the interface to external
logic, such as a separate HDL module or an off-chip device
As shown in Fig.2, in this case there is no physical
embodiment of the SOPC Builder component. Components
that interface to external logic describe only the shape of the
Avalon interface; they do not include logic inside the system
module.

F. Steps for creating system standard design in SOPC
Builder:

1. Adding component in the standard example design of
Nios Il processor

2. Nios Il CPU Configured in SOPC Builder:
3. System Generation in SOPC Builder
4. Integrate SOPC Builder O/P in Quartus Il

IV. IMPLEMENTATION SETUP
A. Flow of system design:
- Start the server.
- Initialize TCP/IP Stack.
- Run up the server.

- If DHCP is available the server will take
dynamic address other wise it will take static IP address
stored in software file.

- After getting the suitable IP address the server will

start serving pages.

- The database is stored in flash memory which is present
on NIOS Il development board.

B. Software source files use:

- Web_server.c: Contain main () and LWIP callback to
install tasks once LWIP has been properly initialized.

- http.c: Implementation of an HTTP server including all
necessary sockets calls to handle a multiple connections and
parsing basic HTTP commands to handle GET and POST
requests.

- http.h: Header information defining HTTP server
implementation and common HTTP server strings and
constant.

- user.h: Definition for the entire example application.

- Network_utilities.c: Contains MAC address, IP address,
and DHCP routines to manage addressing.

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Application software:

The following steps are performing to start with the Nios Il
IDE from the Quartus Il software.[4]

1. Click the System Generation tab of the Altera SOPC Builder
window; then click the Run Nios Il IDE button.

2. From the opening window, choose File New C/C++
Application.

3. Complete or check the following:

Select Count Binary from the Select Project Template field.
The Name field automatically becomes count_binary_0. Click
Finish. At this point, the project is added to workspace and
ready to be built and run.

unk _Linaryc-Yios 11 Integraked Development Environment

e Edt ayth fun Pt Tk Wrecw e

J-EEaE B384 d)e-o-[B14

g 1 Cfot-Friets ‘){ v x || e ‘Bt(evj_ﬁegrtﬁts‘t i cour X‘ 5 cutie o dx
E 5 kb 0 | EECE BTy
- oo vy 0yt [sios2 ssen] || * Copyright © 2004 ltara Cosposstic, e Jese, Califoruis, U3k, E oSk

W TeiceCrvers + 411 rights ressrvsd, b'1 use of st software and docwentation is % ecge e 2

* quy’est to the Lizense greevert locetec at the =nd o this fil= below.® 0’rerde_butm_rts'n;tswmd‘
R 0% i bt acf) vid

0 smeezp sl) it

0% e iFLY vid

+ Daseription 0% inia_nessece) vid

O ORI o urt

*+ L sixplz prograw vhich, wsing an 8 kit varisble, eounts frox 0 to if, 0% curt sevenseg) s void

rapestedly, Cutput of thiz varisble iz displayed mn the LEDs, the Seven 0 qurt ALY vid

* Saguent [isplay, and the LD, The fowr “kuttons” (SWD-50%, arz weed Osmrt,al(FlLE”, e

* £3 eantrol output to tiese deviees in the following wamner: 0% Ferde_butn ess(at_i, FIE

Buctond (3WJ) = LED i3 "counzing" O mal{vid) int

Burtonz (V1) = 3ever Segmen: 3 Mecwiing

Buctor (SU2) = LCD is Mcovyzing

Buctont ($U3) = L. cf the per-pkerels arz "ownting”.

1

* lpon corpletim af "eourtirg”, “kere is a short waiting period during
+ which button/switch presses vill be sdencifizd o ITDIUT.

#HCTE: These suttons have ros heen ce-toursed, so ane hutton press nay
i zange rultiple actifiesticus to STLOUT.

i

* Requirerents

B R

% T3 b= useul, this progean recuires the frllowing devices ta he corfisuseds
an LED PIO nam=d ' led pic'.

& Sevan Sequens Display FX0 naed 'sever_ssq pio',

an 10 Display nexed e disslay',

a Button PIZ named 'buticn pio',

a UIRT {JT45 or stendard ser:al)

1

* Peripherals Ixerzis=c by SF .

* LEDs

* S=ven Saguent Lisplay

120

i | _|J i i
Cnde |00 x
;)

e P Hariptn Ts Gkl Popates s S

Vit et 1

Fig 3. Nios Il IDE Window after Creating the Project

4. To build the project, right-click on the project in the
navigator pane and select build Project. The build process
begins. The Nios Il IDE determines all of the project’s
dependencies, warns of any potential problems, catches errors,
and compiles the source code into a <project name>.elf file.
When the build process successfully completes, one can run
the project. [2]

Vol. 2, 30

4~ Development -count_binary.c -os Il nteated Development Environment

f Edt flanle Sexth B gt Tos Wndw b

HelgFoa]e t-a- | fve-o (B

&
E ‘ v x| Bwemns ‘@board_d\aqrasnrs([ant_bmaw‘t X‘ & Dutne By o«
B B ot snay) 7 5 7 A 4 cut birrh

#- cont_shary 0 spsb[fst sz syen] || 7 Copyright © 234 Altera Corporacion, San Jose, California, U2k, ' & out:at e
B0 Hios M Devie Drvers

* 311 rights v=szrved. 311 use of shis softvare and docuventaticr is i
* cublect to ch2 Licerse igreemens lacated &t the end of this file below.*

43 el captare 2
0 handle _buttan_jnketrupts(vaid®,
0 ¥t _tton o) vaid

1

+ Tesor:ption il pessegz) 1 vai
o} caunt 24 vid

03 cunt_sevenseyl): void

03 cont JAPLEY i

03 count_AFIEY v

g 03 b buttn pressat v, FIE
*oh (@ fubig a0ec.. 0 ner(wi):irt

ioM

4 arrrenesennnn

* 4 gimple prograw wkich, waing an 3 bit verisble, counts from O to £2,
® repeatedly. ubnot f thes va-ishle s gisnaved nnthe 1fTz, the Seven
RIS rogress Inomation ere used

Pom
+ p

1 Buldirgoount binery 0 stslb..

* Tyol ¢ durzng

* whig R
o e

1

i

* Fequireners3

arrnieb

% To be wseful, this progran requirss the follomny devizes te ke configa=d:
*an LED 21D nawed 'led pio

+ o Seven Sxyeens iplay P10 saved 'seven seq pio',

*an 10D isplay mened 'ed disulay',

* & Buetoa PID nawec 'button pio',

* & TART (JTAS or standard se-ial)

f

'
* Feripherals Brerciced by 51
§ T s
* 1

* Seven Segrent Displey

+LCH

e uj ' -

ake -3 all
(Creat:ng genzrated ellak, ..

ck+Pats Nargar “a el o e St

Fig.4 Nios Il IDE Build Process

5. After completion of build process, the project is run
as Nios Il hardware.

6. After successful completion of build and run, the
result is displayed on LCD display, which is connected to
the Nios Il development

V. CONCLUSIONS

The proposed web server perform following functions as
compare to conventional Web server

e HTTP 1.0/1.1 compliant.

e Multiple concurrent requests.

e Small memory footprint (7KB-11KB ROM)
e GET, POST support

e Transfer chunked encoding support

e Full access and exposure to headers

e Form item decoding

e Compliant with IETF RFC 2616

o Easily portable

Vol. 2, 31

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

VI. REFERENCES

[1] Embedded System Security Designing Secure Systems with Windows
CE Lawrence Ricci (eMVP) Larry McGinnes (CPL) Applied Data
Systems COACT.

[2] Designing System on a Chip Products using Systems Engineering Tools
Graham R. Hellestrand, CEO and President, VaST Systems Technology
Corporation, 2700 Augustine Drive, Santa Clara, CA 95054 USA

[3] Nios documentation http:// www.altera.com /Literature/manual .pdf

[4] Nios Embedded Processor Software Development Reference Manual
(Doc. version 3.2).

[5] Nios Hardware Development Tutorials (Doc. Version 1.2)

[6] Sriram V lyer, Pankaj Gupta, “Embedded Realtime System
Programming”, New Delhi: McGraw-Hill, 2006.

VII. BIOGRAPHIES

MsDeepali Shelke, born in Yeotmal in India
on November 15, 1979. She graduated from the
Government College of Engineering, Amravati
(Maharashtra State) and studied her post
graduation in Electronics Engineering from
YCCE, Nagpur (Maharashtra State).

Her employment experience includes five
years of teaching at graduate level. Her special
fields of interest include VLS| and embedded

system.

Ms. Jayu Kalambe, born in Katol in India on
November 17, 1977. She graduated from the
Priyadarshini College of Engineering, Nagpur
(Maharashtra State) and studied her post graduation
in Electronics Engineering from VNIT, Nagpur
(Maharashtra State).

Her employment experience includes Seven years
of teaching at graduate level. She is having to her
credit many International and National Conference
papers. Her special fields of interest include Neural
Network and embedded system.

Ms. Meghana Hasamnis, born in Kolhapur in
India on May 09, 1975. She graduated from
Yeshwantrao Chavan College of Engineering,
Nagpur (Maharashtra State) and studied her post
graduation in Electronics Engineering from
VNIT, Nagpur (Maharashtra State).

Her employment experience includes Seven
years of teaching at graduate level. She is having
to her credit many International and National
Conference papers and received best paper award
in one of the conference. Her special fields of
interest include Embedded System and Fuzzy
Logic.

