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Abstract: Recently, several experimental systems based on 
programmable logic have been designed and implemented which 
are programmed using a hardware design methodology. One 
necessary component of the software environment will be a 
library of standard macrocells corresponding to commonly used 
arithmetic and logical  operations. In this paper Array multiplier 
is designed specially for programmable logic. This multiplier is 
cellular, highly pipelined and uses only of local interconnections. 
In the later part of this paper exposure to Booth multiplier and 
Wallace tree multiplier also has been given which is one of the 
reduction techniques for multipliers. The design is particularly 
carried out for a 4-bit multiplier 

 
Index Terms: adders, algorithm, array, binary arithmetic, 

Boolean algebra, logic design, circuit simulation,  delay 
estimation, field programmable gate array, multiplication 

  

I.   INTRODUCTION 
 Today, complex circuits are described in high-level 

description languages, like VHDL or Verilog, and synthesized 
to gate-level.  A core operation in actual circuits, especially in 
digital signal processing such as Filtering, Modulation, or 
Video Processing or Neural Networks or Satellite 
Communication or Graphics or Control systems etc, is 
multiplication. Often, the computational performance of a 
DSP system is limited by its multiplication performance. This 
paper presents fundamental of some multiplication algorithm 
including signed and unsigned multiplication and there 
implementation details at CMOS level and the results thereof. 
Hardware multiplier implementation will have better speed 
than implementing the same using sequential statements in 
any higher level language. Traditionally shift and add 
algorithm has been implemented to design however this is not 
suitable for VLSI implementation and also from delay point of 
view. Some of the important algorithm proposed in literature 
for VLSI implimentable fast multiplication is Booth 
multiplier, array multiplier and Wallace tree multiplier. This 
paper presents the fundamental technical aspects behind these 
approaches, the details of implementation at CMOS level and  
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the simulation results thereof. HDL to GDS flow of Mentor 
Graphics ASIC tool has been used to implement these 
multipliers.  

 

II.  MULTIPLICATION OPERATION 
The most basic form of multiplication consists of forming 

the product of two unsigned binary numbers. This can be 
accomplished through the traditional technique thought in 
primary school, simplified to base 2. 

 (m×n) bit multiplication can be viewed as forming n 
partial product of m bits each, and then summing  
appropriately shifted partial products to produce an (m+n) bit 
result P. Binary multiplication is equivalent to a logical AND 
operation. Therefore, generating a partial product consist of1 
logical ANDing of the appropriate bit of multiplier and 
multiplicand. In the multiplication algorithm shown in Fig. 3 
all n2 combinations of the bits representing the input operands 
A and B are ANDed together. Perhaps the most obvious 
method of producing these partial products is an array of n2 

AND gates [7], as shown in Fig. 1. This circuit is cellular and 
may be implemented using only local interconnections. In this 
representation, however, the circuit is combinational. All n2 

partial products are generated in parallel. Another approach is 
to produce combinations of ai and bj systolically. By moving 
the bits of one operand across the other in the manner of a 
convolution, between 1 and n partial products are generated 
per cycle.  

 

 
 

Fig. 1: Generation of Partial Products. 
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 Let A and B be the operands with m and n bits 
respectively. Using shift and add type of approach the product 
P of these two operands can be represented as shown in (1). 

Larger multiplication can be more conveniently illustrated 
using dot diagram [1]. Fig. 2 shows a dot diagram for a simple 
8×8 multiplier. Each dot represents a placeholder for a single 
bit that can be a 0 or 1. The partial product is represented by a 
horizontal boxed row of dots, shifted according to their 
weight. The multiplier bits used to generate the partial product 
are shown on the right. 
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Fig 2- Dot Diagram 

 
There are number of techniques that can be used to perform 

multiplication. In general, the choice is based upon factors 
such as latency, throughput, area, and design complexity. An 
obvious approach is to use an (m+1) bit carry propagate adder 
(CPA) to add the first two partial product, then other CPA to 
add the third partial product to the running sum, and so forth. 
Such an approach requires (n-1) CPAs and is slow even if a 
faster CPA is employed. More efficient parallel approach uses 
some sort of array or tree of full adders to sum partial 
products. Array multiplier, Booth Multiplier and Wallace Tree 
multipliers are some of the standard approaches to have 
hardware implementation of binary multiplier which are 
suitable for VLSI implementation at CMOS level. Beginning 
with a simple array for unsigned multipliers, and then modify 
the array to handle signed 2’s compliment number using the 
Baugh-Wooley algorithm. The number of partial products to 
sum can be reduced using Booth encoding and the number of 
logic levels require to perform the summation can be reduced 
with Wallace tree. Unfortunately, Wallace tree are complex to 
layout and have long irregular wires, so hybrid array structure 
may be more attractive.  

 

P0        P1       P2       P3       P4      P5      P6      P7        
-----------------------------------------------

b3a0    b3a1   b3a2  b3a3             
b2a0    b2a1    b2a2   b2a3                            

b1a0   b1a1    b1a2     b1a3                               
b0a0   b0a1   b0a2    b0a3                            

       ------------------------------------------------
b0       b1       b2       b3                      Multiplier             
a0       a1       a2       a3              ndMultiplica

 
Fig 3 : Multiplication of two 4 bit numbers 

 
 

III.  MULTIPLICATION ALGORITHMS 
Parallel multiplier uses combinational circuits only and 

thus operates much faster than serial multipliers. 4 such a 
algorithms are explained below. 

 

A.  Unsigned Array Multiplier 
 

 Implementation of array multipliers to multiply two 4 bit 
unsigned binary numbers a3a2a1a0 and b3b2b1b0 is shown in 
Fig. 4. Here the basic building block of array is full adder 
block (FA) and the total numbers of FA required is 4 × 3 = 12. 
The FA block generates output as 

 
 (1) SUM = A ExOR B ExOR CI         
 (2) CO = A.B + B.CI  + A.CI. 
 
 

 
 

Fig 4: Array Multiplier 
 
In general for two bit unsigned array multiplier the number 

of full adder required is n(n-1). Each AiBj is realized using an 
“AND” gate. Each output bit is computed by adding the 
appropriate AiBj in respective column and carry from 
previous column. To get the final 8 bit output we have to wait 
for maximum combinatorial delay of sum generation of two 
full adder blocks plus carry propagation time of 4 full adder 
block of last but one column. Thus it is fast multipliers but 
hardware complexity is high [4]. 
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B.   2’s Compliment Array Multiplication: Baugh-Wooley  
Algorithm. 
 

Multiplication of a 2’s Compliment number at first might 
seem more difficult because some partial product are negative 
and must be subtracted. Two signed n bits and m bit binary 
number can be represented as shown in (2) and (3) and the 
product P of these two signed number is represented in (5). In 
(5) two of the partial product have negative weight and thus 
should be subtracted rather than added. 

Fig 5 shows the partial product that must be summed. The 
upper parallelogram represents the unsigned multiplication of 
all but the most significant bit of input. The next two pair of 
row is the inversion of the term to be subtracted. Each has 
implicit leading and trailing 0’s, which are inverted to leading 
and trailing 1’s. Extra ones must be added in the least 
significant column when taking 2’s Compliment. The 
multiplier delay depends on number of partial product to be 
summed. The modified Baugh-Wooley multiplier reduces this 
number of partial product by recomputing the sum of the 
constant 1’s and pushing some of the terms upward to extra 
column. Fig. 6 shows such an arrangement. 
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P0        P1       P2          P3       P4           P5        P6     P7          
  ---------------------------------------------       

1                                                                                              
1          1          1      (x0y3) (x1y3)    (x2y3)      1       1             
1                                                                                              
1          1          1      (x0y3) (x1y3)    (x2y3)      1       1             

 3y3         x                    
    x2y0      x2y1    x2y2                                        
   x1y0   x1y1y2        x1                                                  

   x0y0   x0y1x0y2                                   
------------------------------------                         
         x0      x1       x2  x3                                                            

y0      y1     y2       y3            

'''

'''

 

 
Fig.5.  Partial Product for 2’s Compliment Multiplication (terms in bracket 
indicate compliment) 

 
 

Implementation of signed multiplier two signed 5 bit binary 
is shown in Fig. 7. Here two set of partial products 
(A4B3)(A4B2)(A4B1)(A4B0) & (A3B4)(A2B4)(A1B4)(A0B4) are 
to be subtracted from other partial product. So in the last two 
rows there are 4 full subtractor cell in each row. Full 
subtractor cell subtracts from it’s A input the other two input 
in B and CI and computes difference (DIF) and output borrow 
(CO) as per following logic.  

  
(1) DIF=A  xor B xor CI   
(2) CO=A’B+A’.CI+B.CI.  
 
So these two partial products are input to B and CI terminal 

of FS block. Other partial product resultant sum is fed to the A 
input of the FS block. The addition is done by first 4 rows of 
FA blocks, each now containing three blocks. thus for signed 
multiplication of two 5 bit binary number, full adder blocks 
required is 3 × 4 = 12 numbers and fill subtractor blocks 
required are 2 × 4 = 8. 

In general for signed multiplication of two n bit binary 
numbers full adder blocks required are (n-2)(n-1) and full 
subtractor block required is 2(n-1). To get the final 9 bit 
output we have to wait for maximum combinational delay of 
sum generation of three full adder blocks plus carry 
propagation time of 5 FA block of last and last but one 
column. The final carry output is ignored since it does not 
affect the result. So it is a fast multiplier but hardware 
complexity is also high. 

 

P0         P1         P2            P3             P4             P5                P6     P7      
 ---------------------------------------------------------     

(x0y3)     (x1y3)       (x2y3)        y3        x31
  y0        x2 x2y1          y2        x2(x3y2)                     
    x1y0y1        x1y2        x1(x3y1)                                       

     x0y0    x0y1      x0y2(x3y0)              1                                           
--------------------------------                                           

        x0        x12         x x3                                                                 
y0        y1        y2         y3      

'''

'

'

'

 
Fig. 6 : Simplified Partial Product for 2’s Compliment Multiplication (terms 
in bracket indicate compliment) 

 

 
 

Fig.7. Baugh Wooley signed multiplier 
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C. Booth Multiplication 
 

One way to speed up the multiplication is Booth encoding 
[3], which performs several steps of multiplication at once. 
Booth’s algorithm takes advantage of the fact that an adder 
subtractor is nearly as fast and small as a simple adder [6][8]. 
In the elementary school algorithm, we shift the multiplicand 
X, then use one bit of multiplier Y if that shifted value is to be 
added into the partial product. The most common form of 
booth’s algorithm looks at three bit of multiplier at a time to 
perform two stages of multiplication.  

Consider once again the two’s compliment representation 
of multiplier Y. 
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Taking advantage of the fact that  2a = 2a+1 – 2a above equation 
can be written as  
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Now, extract the first two terms. 
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Each term contributes to one step of the elementary school 
algorithm: the right hand term can be used to add x to partial 
product, while the left hand term can add 2x.( in fact, since yn-

2 also appears in another term, no pair of terms exactly 
corresponds to  a step in elementary school algorithm. But if 
we assume that the y bit to the right of the decimal point are 0 
all the required terms are included in the multiplication.) if for 
example, yn-1 = yn’ the left hand term does not contribute to the 
partial product. By picking three bits of y at a time, we can 
determine whether  to add or subtract x or 2x (shifted by 
proper amount, two bits per step) to the partial product. Each 
three bit value overlaps with its neighbour by 1 bit. Table I 
shows the contributing term for each three bit code from y. 

 
 

TABLE I 
CONTRIBUTING TERM FOR EACH 3 BIT CODE FROM Y 

 
YiYi-1Yi-2 Increment 

000 0 
001 X 
010 X 
011 2X 
100 -2X 
101 -X 
110 -X 
111 0 

 
The guidelines for performing Booth Multiplication are 

given in Table 1.  From the basics of Booth Multiplication it 
can be proved that the addition/subtraction operation can be 
skipped if the successive bits in the multiplicand are same. If 3 
consecutive bits are same la LSB then addition/subtraction 
operation can be skipped. This fact is indicated in the above 
table.  

 
 

 
Thus in most of the cases the delay associated with Booth 

Multiplication are smaller than that with Array Multiplier. 
However the performance of Booth Multiplier for delay is 
input data dependant. In the worst case the delay with booth 
multiplier is on per with Array Multiplier. 

The delay is confidently reduced in Wallace Tree 
Multiplier which is explained in the following section. 

 
D. Wallace Tree Multiplier 
 

A fast process for multiplication of two numbers was 
developed by Wallace [5]. Using this method, a three step 
process is used to multiply two numbers; the bit products are 
formed, the bit product matrix is reduced to a two row matrix 
where sum of the row equals the sum of bit products, and the 
two resulting rows are summed with a fast adder to produce a 
final product. 

Consider an example of multiplication of two four bit 
numbers. In the first step the partial products from MSB 
position  are rearranged as shown in Fig. 8(b) and the partial 
product from the middle column are added using half adder as 
grouped in Fig. 8(b). in stage two the resultant arrangement 
with sum and carry bit from addition of first step being 
properly placed and bits in column two    to five are added 
using half adder or full adder as applicable as shown in Fig. 
8(c). This will results into the arrangement of bits in two rows 
which are again added using half adder or full adder as 
applicable as shown in Fig. 8(d). Thus there is a delay of only 
three stages as compared to six in array multiplier. The 
schematic of Wallace Tree Multiplier is shown in Fig. 8. 

Table II shows the number of stages required for Wallace 
Tree Multiplication. If the multiplier has just one more bit 
than any of the “thresholds”, one more stage is needed in the 
reduction process. For example, 5 stages are needed if n is 
equal to 13, but 6 stages are needed if n equals to 14. 
 

 

 
Fig. 8 Wallace Tree Multiplier 

 
 

                                                                                                                                              Vol. 2,     163



Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India          
 

  

 
TABLE II 

STAGES FOR WALLACE TREE MULTIPLIER 
 

Number of bit 
In Multiplier 

No of reduction 
stages 

3 1 
4 2 

4<n<=6 3 
6<n<=9 4 

9<n<=13 5 
13<n<=19 6 
19<n<=28 7 
28<n<=42 8 
42<n<=63 9 

 

IV.  IMPLIMENTATION DETAILS 
The above three multipliers are implemented in CMOS 

using  HDL to GDS flow of Mentor Graphics ASIC tools. 
the design entry was using VHDL which was converted into 
Verilog and Synthesized using Leonardo Spectrum. The 
verilog file from synthesizer is inputted to IC Station to 
generate Layout and Netlist and simulated for functionality 
using ELDO simulator. The layouts generated by IC Station 
are shown in Fig. 9, 10, 11 and 12 for unsigned Array 
Multiplier, signed Array Multiplier, Booth Multiplier and 
Wallace Tree Multiplier respectively. All the tools used are 
from Mentor Graphics ASIC Suite. The results of simulation 
for each multiplier are explained in the next section. 
 

V.  RESULTS 
  Table III shows the simulation results of all the 

multipliers mentioned above w.r.t.  Power at Vdd = 5V and 
Vdd = 3.3V, number of components required, memory 
consumed and delay. A power delay product has been 
computed for comparison.  

 
TABLE III 

SIMULATION RESULTS W.R..T. POWER, NUMBER  OF 
COMPONENTS, MEMORY & DELAY 

 
Power (nW) 

Multipl
ier Vdd

=5V 

Vdd
= 

3..3
V 

No 
of 

com
pone
nts 

Me
mor

y 
(Kb
ytes) 

Dela
y 

Pow
er 

Dela
y 

Prod
uct 

Unsigned 
Array 

Multiplier 
4.447 1.857 490 2336 14.4 ns 64.03 

Signed 
Array 

Multiplier 
3.889 1.625 476 2315 14.4 ns 56.00 

Booth 
Multiplier 11.42 4.723 1278 5265 16.8 ns 191.8 

Wallace 
Tree 

Multiplier 
5.019 2.146 562 2506 13.7 ns 68.76 

 
 
 
 

VI.  CONCLUSION 
This article presents a basic multiplier algorithm for 

multiplication of 4 bit binary numbers which is suitable for 
CMOS implementation with partial product generation 
technique. From the results of simulation it can be concluded 
that Booth Multiplier is inferior in all respect and hence 
should be avoided.  From power delay product Array 
Multiplier turns out to be better than Wallace Tree Multiplier. 
However Array Multiplier gives optimum power consumption 
as well as number of components required, but delay for this 
multiplier is larger than Wallace Tree Multiplier. Hence for 
low power requirement Array multiplier is suggested and for 
less delay requirement Wallace Tree Multiplier is suggested.  
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Fig. 9.  Layout of  Unsigned Array Multiplier 
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Fig. 10.   Layout of  Signed Array Multiplier 

 

 
 

Fig. 11.   Layout of Booth Multiplier 
 
 

 

 
 

Fig. 12.    Layout of  Wallace Tree Multiplier 
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