
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract: Recently, several experimental systems based on
programmable logic have been designed and implemented which
are programmed using a hardware design methodology. One
necessary component of the software environment will be a
library of standard macrocells corresponding to commonly used
arithmetic and logical operations. In this paper Array multiplier
is designed specially for programmable logic. This multiplier is
cellular, highly pipelined and uses only of local interconnections.
In the later part of this paper exposure to Booth multiplier and
Wallace tree multiplier also has been given which is one of the
reduction techniques for multipliers. The design is particularly
carried out for a 4-bit multiplier

Index Terms: adders, algorithm, array, binary arithmetic,

Boolean algebra, logic design, circuit simulation, delay
estimation, field programmable gate array, multiplication

I. INTRODUCTION
 Today, complex circuits are described in high-level

description languages, like VHDL or Verilog, and synthesized
to gate-level. A core operation in actual circuits, especially in
digital signal processing such as Filtering, Modulation, or
Video Processing or Neural Networks or Satellite
Communication or Graphics or Control systems etc, is
multiplication. Often, the computational performance of a
DSP system is limited by its multiplication performance. This
paper presents fundamental of some multiplication algorithm
including signed and unsigned multiplication and there
implementation details at CMOS level and the results thereof.
Hardware multiplier implementation will have better speed
than implementing the same using sequential statements in
any higher level language. Traditionally shift and add
algorithm has been implemented to design however this is not
suitable for VLSI implementation and also from delay point of
view. Some of the important algorithm proposed in literature
for VLSI implimentable fast multiplication is Booth
multiplier, array multiplier and Wallace tree multiplier. This
paper presents the fundamental technical aspects behind these
approaches, the details of implementation at CMOS level and

 Prof Dr. (Mrs) S. Subbaraman is faculty & Dean(Academic) at Walchand

College of Engineering, Sangli, India (416415)
 (shailasubbaraman@yahoo.com)
 Pravinkumar G Parate is ME Student at Walchand College of

Engineering, Sangli, India 416415. (pgparate@rediffmail.com

the simulation results thereof. HDL to GDS flow of Mentor
Graphics ASIC tool has been used to implement these
multipliers.

II. MULTIPLICATION OPERATION
The most basic form of multiplication consists of forming

the product of two unsigned binary numbers. This can be
accomplished through the traditional technique thought in
primary school, simplified to base 2.

 (m×n) bit multiplication can be viewed as forming n
partial product of m bits each, and then summing
appropriately shifted partial products to produce an (m+n) bit
result P. Binary multiplication is equivalent to a logical AND
operation. Therefore, generating a partial product consist of1
logical ANDing of the appropriate bit of multiplier and
multiplicand. In the multiplication algorithm shown in Fig. 3
all n2 combinations of the bits representing the input operands
A and B are ANDed together. Perhaps the most obvious
method of producing these partial products is an array of n2

AND gates [7], as shown in Fig. 1. This circuit is cellular and
may be implemented using only local interconnections. In this
representation, however, the circuit is combinational. All n2

partial products are generated in parallel. Another approach is
to produce combinations of ai and bj systolically. By moving
the bits of one operand across the other in the manner of a
convolution, between 1 and n partial products are generated
per cycle.

Fig. 1: Generation of Partial Products.

A Comparative Study of Design and Analysis of
4 Bit Multipliers.

S. Subbaraman and Pravinkumar G. Parate

 Vol. 2, 160

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

 Let A and B be the operands with m and n bits
respectively. Using shift and add type of approach the product
P of these two operands can be represented as shown in (1).

Larger multiplication can be more conveniently illustrated
using dot diagram [1]. Fig. 2 shows a dot diagram for a simple
8×8 multiplier. Each dot represents a placeholder for a single
bit that can be a 0 or 1. The partial product is represented by a
horizontal boxed row of dots, shifted according to their
weight. The multiplier bits used to generate the partial product
are shown on the right.

)1(2

]2[]2[

]2[]2[

1

0

1

0

1

0

1

0

1

0

1

0

ji
n

i
ij

m

j

i
n

i
i

m

j

j
j

i
n

i
i

m

j

J
j

ba

baP

bBaA

+
−

=

−

=

−

=

−

=

−

=

−

=

∑∑

∑∑

∑∑

=

=

==

•••••••••
•••••••••
•••••••••
•••••••••
•••••••••
•••••••••
•••••••••
•••••••••

Fig 2- Dot Diagram

There are number of techniques that can be used to perform

multiplication. In general, the choice is based upon factors
such as latency, throughput, area, and design complexity. An
obvious approach is to use an (m+1) bit carry propagate adder
(CPA) to add the first two partial product, then other CPA to
add the third partial product to the running sum, and so forth.
Such an approach requires (n-1) CPAs and is slow even if a
faster CPA is employed. More efficient parallel approach uses
some sort of array or tree of full adders to sum partial
products. Array multiplier, Booth Multiplier and Wallace Tree
multipliers are some of the standard approaches to have
hardware implementation of binary multiplier which are
suitable for VLSI implementation at CMOS level. Beginning
with a simple array for unsigned multipliers, and then modify
the array to handle signed 2’s compliment number using the
Baugh-Wooley algorithm. The number of partial products to
sum can be reduced using Booth encoding and the number of
logic levels require to perform the summation can be reduced
with Wallace tree. Unfortunately, Wallace tree are complex to
layout and have long irregular wires, so hybrid array structure
may be more attractive.

P0 P1 P2 P3 P4 P5 P6 P7

b3a0 b3a1 b3a2 b3a3
b2a0 b2a1 b2a2 b2a3

b1a0 b1a1 b1a2 b1a3
b0a0 b0a1 b0a2 b0a3

 --
b0 b1 b2 b3 Multiplier
a0 a1 a2 a3 ndMultiplica

Fig 3 : Multiplication of two 4 bit numbers

III. MULTIPLICATION ALGORITHMS
Parallel multiplier uses combinational circuits only and

thus operates much faster than serial multipliers. 4 such a
algorithms are explained below.

A. Unsigned Array Multiplier

 Implementation of array multipliers to multiply two 4 bit
unsigned binary numbers a3a2a1a0 and b3b2b1b0 is shown in
Fig. 4. Here the basic building block of array is full adder
block (FA) and the total numbers of FA required is 4 × 3 = 12.
The FA block generates output as

 (1) SUM = A ExOR B ExOR CI
 (2) CO = A.B + B.CI + A.CI.

Fig 4: Array Multiplier

In general for two bit unsigned array multiplier the number

of full adder required is n(n-1). Each AiBj is realized using an
“AND” gate. Each output bit is computed by adding the
appropriate AiBj in respective column and carry from
previous column. To get the final 8 bit output we have to wait
for maximum combinatorial delay of sum generation of two
full adder blocks plus carry propagation time of 4 full adder
block of last but one column. Thus it is fast multipliers but
hardware complexity is high [4].

 Vol. 2, 161

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

B. 2’s Compliment Array Multiplication: Baugh-Wooley
Algorithm.

Multiplication of a 2’s Compliment number at first might
seem more difficult because some partial product are negative
and must be subtracted. Two signed n bits and m bit binary
number can be represented as shown in (2) and (3) and the
product P of these two signed number is represented in (5). In
(5) two of the partial product have negative weight and thus
should be subtracted rather than added.

Fig 5 shows the partial product that must be summed. The
upper parallelogram represents the unsigned multiplication of
all but the most significant bit of input. The next two pair of
row is the inversion of the term to be subtracted. Each has
implicit leading and trailing 0’s, which are inverted to leading
and trailing 1’s. Extra ones must be added in the least
significant column when taking 2’s Compliment. The
multiplier delay depends on number of partial product to be
summed. The modified Baugh-Wooley multiplier reduces this
number of partial product by recomputing the sum of the
constant 1’s and pushing some of the terms upward to extra
column. Fig. 6 shows such an arrangement.

)4(]22[

22

]22][22[

)3(22

)2(22

2

0

1
1

1
1

2

0

2
11

2

0

2

0

2

0

1
1

2

0

1
1

2

0

1
1

2

0

1
1

∑∑

∑∑

∑∑

∑

∑

−

=

−+
−

−+
−

−

=

−+
−−

+
−

=

−

=

−

=

−
−

−

=

−
−

−

=

−
−

−

=

−
−

+−

+=

+−+−=

+−=

+−=

m

j

ni
nj

mi
m

n

i
i

nm
mn

ji
m

j
ji

n

i

i
n

i
i

n
n

j
m

j
j

m
m

i
n

i
i

n
n

j
m

j
j

m
m

xyyx

yxyx

xxyyP

xxX

yyY

P0 P1 P2 P3 P4 P5 P6 P7

1
1 1 1 (x0y3) (x1y3) (x2y3) 1 1
1
1 1 1 (x0y3) (x1y3) (x2y3) 1 1

 3y3 x
 x2y0 x2y1 x2y2
 x1y0 x1y1y2 x1

 x0y0 x0y1x0y2

 x0 x1 x2 x3

y0 y1 y2 y3

'''

'''

Fig.5. Partial Product for 2’s Compliment Multiplication (terms in bracket
indicate compliment)

Implementation of signed multiplier two signed 5 bit binary
is shown in Fig. 7. Here two set of partial products
(A4B3)(A4B2)(A4B1)(A4B0) & (A3B4)(A2B4)(A1B4)(A0B4) are
to be subtracted from other partial product. So in the last two
rows there are 4 full subtractor cell in each row. Full
subtractor cell subtracts from it’s A input the other two input
in B and CI and computes difference (DIF) and output borrow
(CO) as per following logic.

(1) DIF=A xor B xor CI
(2) CO=A’B+A’.CI+B.CI.

So these two partial products are input to B and CI terminal

of FS block. Other partial product resultant sum is fed to the A
input of the FS block. The addition is done by first 4 rows of
FA blocks, each now containing three blocks. thus for signed
multiplication of two 5 bit binary number, full adder blocks
required is 3 × 4 = 12 numbers and fill subtractor blocks
required are 2 × 4 = 8.

In general for signed multiplication of two n bit binary
numbers full adder blocks required are (n-2)(n-1) and full
subtractor block required is 2(n-1). To get the final 9 bit
output we have to wait for maximum combinational delay of
sum generation of three full adder blocks plus carry
propagation time of 5 FA block of last and last but one
column. The final carry output is ignored since it does not
affect the result. So it is a fast multiplier but hardware
complexity is also high.

P0 P1 P2 P3 P4 P5 P6 P7

(x0y3) (x1y3) (x2y3) y3 x31
 y0 x2 x2y1 y2 x2(x3y2)
 x1y0y1 x1y2 x1(x3y1)

 x0y0 x0y1 x0y2(x3y0) 1

 x0 x12 x x3
y0 y1 y2 y3

'''

'

'

'

Fig. 6 : Simplified Partial Product for 2’s Compliment Multiplication (terms
in bracket indicate compliment)

Fig.7. Baugh Wooley signed multiplier

 Vol. 2, 162

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

C. Booth Multiplication

One way to speed up the multiplication is Booth encoding
[3], which performs several steps of multiplication at once.
Booth’s algorithm takes advantage of the fact that an adder
subtractor is nearly as fast and small as a simple adder [6][8].
In the elementary school algorithm, we shift the multiplicand
X, then use one bit of multiplier Y if that shifted value is to be
added into the partial product. The most common form of
booth’s algorithm looks at three bit of multiplier at a time to
perform two stages of multiplication.

Consider once again the two’s compliment representation
of multiplier Y.

...........222 2
2

1
1 +++−= −

−
−

−
n

n
n

n
n

n YYYY
Taking advantage of the fact that 2a = 2a+1 – 2a above equation
can be written as

() () ()222 23

2
12

1
1 +−+−+−= −−

−
−−

−
− nn

n
nn

n
nn

n YYYYYYY

Now, extract the first two terms.

() ()12
1

1 22 −−
−

− −+− nn
n

nn
n YYYY

Each term contributes to one step of the elementary school
algorithm: the right hand term can be used to add x to partial
product, while the left hand term can add 2x.(in fact, since yn-

2 also appears in another term, no pair of terms exactly
corresponds to a step in elementary school algorithm. But if
we assume that the y bit to the right of the decimal point are 0
all the required terms are included in the multiplication.) if for
example, yn-1 = yn’ the left hand term does not contribute to the
partial product. By picking three bits of y at a time, we can
determine whether to add or subtract x or 2x (shifted by
proper amount, two bits per step) to the partial product. Each
three bit value overlaps with its neighbour by 1 bit. Table I
shows the contributing term for each three bit code from y.

TABLE I
CONTRIBUTING TERM FOR EACH 3 BIT CODE FROM Y

YiYi-1Yi-2 Increment

000 0
001 X
010 X
011 2X
100 -2X
101 -X
110 -X
111 0

The guidelines for performing Booth Multiplication are

given in Table 1. From the basics of Booth Multiplication it
can be proved that the addition/subtraction operation can be
skipped if the successive bits in the multiplicand are same. If 3
consecutive bits are same la LSB then addition/subtraction
operation can be skipped. This fact is indicated in the above
table.

Thus in most of the cases the delay associated with Booth

Multiplication are smaller than that with Array Multiplier.
However the performance of Booth Multiplier for delay is
input data dependant. In the worst case the delay with booth
multiplier is on per with Array Multiplier.

The delay is confidently reduced in Wallace Tree
Multiplier which is explained in the following section.

D. Wallace Tree Multiplier

A fast process for multiplication of two numbers was
developed by Wallace [5]. Using this method, a three step
process is used to multiply two numbers; the bit products are
formed, the bit product matrix is reduced to a two row matrix
where sum of the row equals the sum of bit products, and the
two resulting rows are summed with a fast adder to produce a
final product.

Consider an example of multiplication of two four bit
numbers. In the first step the partial products from MSB
position are rearranged as shown in Fig. 8(b) and the partial
product from the middle column are added using half adder as
grouped in Fig. 8(b). in stage two the resultant arrangement
with sum and carry bit from addition of first step being
properly placed and bits in column two to five are added
using half adder or full adder as applicable as shown in Fig.
8(c). This will results into the arrangement of bits in two rows
which are again added using half adder or full adder as
applicable as shown in Fig. 8(d). Thus there is a delay of only
three stages as compared to six in array multiplier. The
schematic of Wallace Tree Multiplier is shown in Fig. 8.

Table II shows the number of stages required for Wallace
Tree Multiplication. If the multiplier has just one more bit
than any of the “thresholds”, one more stage is needed in the
reduction process. For example, 5 stages are needed if n is
equal to 13, but 6 stages are needed if n equals to 14.

Fig. 8 Wallace Tree Multiplier

 Vol. 2, 163

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

TABLE II

STAGES FOR WALLACE TREE MULTIPLIER

Number of bit
In Multiplier

No of reduction
stages

3 1
4 2

4<n<=6 3
6<n<=9 4

9<n<=13 5
13<n<=19 6
19<n<=28 7
28<n<=42 8
42<n<=63 9

IV. IMPLIMENTATION DETAILS
The above three multipliers are implemented in CMOS

using HDL to GDS flow of Mentor Graphics ASIC tools.
the design entry was using VHDL which was converted into
Verilog and Synthesized using Leonardo Spectrum. The
verilog file from synthesizer is inputted to IC Station to
generate Layout and Netlist and simulated for functionality
using ELDO simulator. The layouts generated by IC Station
are shown in Fig. 9, 10, 11 and 12 for unsigned Array
Multiplier, signed Array Multiplier, Booth Multiplier and
Wallace Tree Multiplier respectively. All the tools used are
from Mentor Graphics ASIC Suite. The results of simulation
for each multiplier are explained in the next section.

V. RESULTS
 Table III shows the simulation results of all the

multipliers mentioned above w.r.t. Power at Vdd = 5V and
Vdd = 3.3V, number of components required, memory
consumed and delay. A power delay product has been
computed for comparison.

TABLE III

SIMULATION RESULTS W.R..T. POWER, NUMBER OF
COMPONENTS, MEMORY & DELAY

Power (nW)

Multipl
ier Vdd

=5V

Vdd
=

3..3
V

No
of

com
pone
nts

Me
mor

y
(Kb
ytes)

Dela
y

Pow
er

Dela
y

Prod
uct

Unsigned
Array

Multiplier
4.447 1.857 490 2336 14.4 ns 64.03

Signed
Array

Multiplier
3.889 1.625 476 2315 14.4 ns 56.00

Booth
Multiplier 11.42 4.723 1278 5265 16.8 ns 191.8

Wallace
Tree

Multiplier
5.019 2.146 562 2506 13.7 ns 68.76

VI. CONCLUSION
This article presents a basic multiplier algorithm for

multiplication of 4 bit binary numbers which is suitable for
CMOS implementation with partial product generation
technique. From the results of simulation it can be concluded
that Booth Multiplier is inferior in all respect and hence
should be avoided. From power delay product Array
Multiplier turns out to be better than Wallace Tree Multiplier.
However Array Multiplier gives optimum power consumption
as well as number of components required, but delay for this
multiplier is larger than Wallace Tree Multiplier. Hence for
low power requirement Array multiplier is suggested and for
less delay requirement Wallace Tree Multiplier is suggested.

VII. REFERENCES

Books:
[1] Neil H.E. Weste, Devid Harris Ayan Banerjee, Principles of CMOS

VLSI Design , third edition.
[2] Etienne Sicard, Sonia Delmas Bendhia, Basic of CMOS Cell Designs,.

New Delhi: McGraw-Hill, , pp. 267-271.
[3] Wayne Wolf, Modern VLSI Design, Systems on Silicon. (2nd ed.),

Pearson Education Asia, pp. 297-305

Papers from Conference Proceedings (Published):
[4] Jorn Stohmann Erich Barke, “A Universal Pezaris Array

MultiplierGenerator for SRAM-Based FPGAs” IMS – Institute of
Microelectronics System, University of Hanover Callinstr, 34, D-30167
Hanover, Genmany.

[5] Moises E. Robinson and Earl Swartzlander, Jr. “A Reduction Schem to
Optimize the Wallace Multiplier” Department of Electrical and
computer Engineering , University of Texas at Austin, Austin, USA.

[6] R. Lyon, “2’s Compliment Pipelined Multipliers”, IEEE Transactions
on Communication, April, 1976.

[7] Steven A. Guccione MARIO j. Gonzalez “A Cellular Multiplier for
Programmable Logic” Computer Engineering Research Center, ”
Department of Electrical and computer Engineering , University of
Texas at Austin, Austin, USA, febuary, 1994.

[8] Kai Wang, “Global and Modular two’s Compliment Array Multipliers”
IEEE Transactions on Computers, Vol- C-28, issue 4, Apr 79.

[9] Shivaling S. Mahant-Shetti, Poras T. Balsara, and Carl Lemonds “ High
Performance Low Power Array Multiplier Using Temporal Tilting”
IEEE Transaction on VLSI systems, vol. 7, No 1, Mar 1999,

Fig. 9. Layout of Unsigned Array Multiplier

 Vol. 2, 164

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 10. Layout of Signed Array Multiplier

Fig. 11. Layout of Booth Multiplier

Fig. 12. Layout of Wallace Tree Multiplier

VIII. BIOGRAPHIES

Shaila Subbaraman received her M-Tech degree
from IISc Bangalore in 1975 and Ph.D. from IIT
Bombay in 1999. she worked in Semiconductor
Device Manufacturing company from 1975 to 1989.
Currently she is Professor in Department of
Electronics in Walchand College of Engineering,
Sangli. she has keen interest in the field of
Microelectronics and VLSI Design

Pravinkumar G. Parate received the B.E. degree in
Electronics Engineering in 2002 from BDCoE
Sevagram (Wardha), Nagpur University, Nagpur,
India and perusing the M.E. degree in Electronics
Engineering from Walchand College of Engineering,
Sangli, India. He has put in three years teaching
experience and worked in RAICSIT, Wardha and
G.H. Raisoni College of Engineering, Nagpur.

 Vol. 2, 165

