

Abstract-- This paper is concern with “Development of
Artificial Neural Network on Field Programmable Gate Array”.
One of the characteristics of many industrial processes is the
complex interrelation among the variables of the process. This
has lead to the development of sensors, where by means of a
computer program variables are estimated from the information
gathered. On-line monitoring of all variables would be the best
solution as off-line monitoring method means loss of information,
delay in getting results and requires greater human efforts. Our
work is based on a modular design of neural network using
digital non-liner activation function. The ability of Artificial
Neural Network to learn from experience rather from
mechanistic description is making them the preferred choice to
model processes with complex variables.

This new sensor will be synthesized in a Field Programmable
Gate Array to provide the process with the hardware version of
the software sensor is simulated using ModelSim5.5c software
and the simulation results have been presented in the paper.

Index Terms-- ANN, FPGA

I. INTRODUCTION
n case of hardware implementation of the ANN solution
would be desirable, because it eliminates part of the cost
and gives better level of confidence in the product, hence

we thought for design of implementation of an ANN using
Field programmable Gate Array (FPGA). Within the
monitoring and control task required to optimize process
operation , on-line monitoring of all variables would be the
best solution , as off-line methods mean loss of information,
delay in getting results and normally requires greater human
effort., although on-line measurements would be desirable.

The network required for this purpose is multilayered
network among which, we decided for implementing a single
neuron. This developed neuron can be recursively used for
obtaining the multilayer network. This multilayer network can
be termed as a sensor, which can use for estimating the
complex variables of the process which is going on in the
industry.[4]

Jayu Kalambe, Lecturer,SRKNEC,Nagpur
Jayu_kalambe@rediffmail.com
Richa khandelwal Lecturer,SRKNEC,Nagpur
reechareema@rediffmail.com
Meghana Hasamnis Lecturer,SRKNEC,Nagpur
meghanahasamnis@rediffmail.com

The network required for this purpose is multilayered network
among which, We have implemented a single neuron. This
developed neuron can be recursively used for obtaining the
multilayer network. This multilayer network can be termed as
a sensor, which can use for estimating the complex variables
of the process which is going on in the industry. Conventional
computer hardware is not optimized for neural network
processing and, while their implicit functions are
comparatively simple, their hardware implementation can be
expensive.[6]

II. HARDWARE AND IMPLEMENTATION OF ANN
The following expression is to be implemented in

hardware,[1]

where, Ii are the input signals, Ri is the set of input vectors,
Wji the weight an a the activation.

Our implementation is based on a two input non-linear
processing element (PE) with a digital sigmoid activation
function. The design and all our work are geared towards the
implementation of neuron in a modular fashion our modular
design means that the network can become as large as
practically possible thus providing a structure for complex
application. The architecture and control logic were firstly
defined in block diagram for further detailing. The software
platform for the FPGA hardware implementation allows
several levels of definition of logic function. One level is
through hardware description languages (HDL). The block
diagram of complete neuron is shown on figure 1 The circuit
does the algebraic equations of the mathematical model of the
neuron, that is, the multiplication and sum required in the
neuron’s internal processing. In this case, two inputs are
specified and each is seventeen bits wide. Floating point
binary representation (IEEE 754 standard) is used in order to
be able to handle positive as well as negative data.

Figure 2 is given for multilayer neural network which
consists of two hidden neuron and one output neuron, which
requires six multipliers and three adders for its complete
implementation. Here Floating-point Multiplier and Floating-
Point Adder are used, as the inputs to them are in floating-
point format. The two inputs are provided to the multiplexer.

Development of Artificial Neural Network on
Field Programmable Gate Array

Jayu Kalambe, Richa Khandelwal and Meghana Hasamnis

I

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 2, 200

The Multiplexer will select the input depending upon the
select line and the first weight depending upon the address
which is stored in ROM module as an input and will produce
the output.[5] Then the output of the multiplexer is fed as an
input to the multiplier where the inputs will get multiplied and
the obtained result is then stored in the register bank_0. Then
the next multiplexer will select the output of register as first
data and the weight fro ROM module depending upon the
select lines. Then the output of the multiplexer are taken as an
input by the adder. The Adder will just add these two inputs.
Then the output is passed through the non linear activation.

Figure 1 Block diagram of the complete neural network

III. REGISTER LEVEL ARTIFICIAL NEURAL
NETWORK

 Figure 2. Functional block diagram of the complete neural network

IV. MODULES USED FOR DEVELOPMENT OF ANN
The whole software consists of several modules. Here the

each input and output is 17 bits.
 Floating point representation consists of sign, exponent and

mantissa. Among 17 bit, 1 bit is sign, 6 bits are exponent and
10 bits are mantissa. There are in all eight modules control
unit, floating-point adder module, floating-point multiplier
module, rom module, register modules and multiplexer
modules. These modules can be divided into asynchronous
and synchronous. All the modules are first designed
individually and then they are called in together to develop
one neuron.

A. Control Unit
Control unit is designed to provide control signals to all the

modules of a neuron. The clock and reset signal is taken as a
input signals and the controlling signals of each modules has
been taken as an output signals. The control unit was design
using state machine mechanism. The input and output consists
of 17 bits each. It is implemented in VHDL language. This
module has the time control of all the modules that comprise
the neuron. It is connected to ROM module.

.

B. Ram Modules
ROM module has been designed to provide weights to the

respective inputs. In ROM the constants floating-point values
are stored and these are read when needed,where the data are
stored in floating point format. The data is nothing but the
respective weights. These weights are multiplied by their
respective inputs before summation. Here the inputs and
weights both are 17 bits and hence we require 17 bit
multiplier and 17 bit adder. These weights stored are

X +

W0 W1 W2
W3 W4 W5

F
G

H
I

J
K

4
5

6
7

8
9

0

1

2

0

1

0
1

2
3

4

5

0
1

2
3

4

5

A
B

F
G
H
I

F
G
H
I

C
G

H
I
J

F

D

E

C

D
E

J
K

L

2

m m

FP_MULT FP_ADD

REG_0 REG_1

OUT

MUX_0 MUX_1
REG_EN0
REG_EN1
REG_EN2
REG_EN3
REG_EN4
REG_EN5

REG_EN0
REG_EN1
REG_EN2
REG_EN3
REG_EN4
REG_EN5

m m

In 0

In 1

DATA

ROM

Address

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 2, 201

constants values. It is connected to Control unit and
multiplexer module

C. Register Banks
Registers are designed with “D” type flip-flop. Registers

has been designed to store the calculated value after
multiplication and addition. We require two register bank
(reg_0 and reg_1), reg_0 for storing the output of multiplier
and reg_1 for storing the output of adder. These register bank
consists of six registers each of 17 bit. All this registers of
register banks consists of 17 bit each hence we first design
one 17 bit register and this has been called in each register
bank six times. They are connected to multiplier and adder.

D. Multiplexers
Multiplexer modules are designed to select the multiple

inputs. In all we require two multiplexers (Mux_0 and
Mux_1), Mux_0 for selecting inputs from provided inputs and
from ROM and Mux_1 for selecting inputs from ROM and
output from reg_0. It is used for selecting weights and inputs.
The multiplexer is also 17 bit as the inputs to the multiplexer
is 17 bit

E. Floating-Point Multiplier
 Floating-point multiplier is designed to multiply the

inputs with their respective weights. There are two inputs
which we are providing to the multiplexer, the multiplexer
will select the desired input and the desired weight from the
ROM module and will select the desired input and the weight.
The inputs to the multiplier are multiplexer output and ROM
output, multiplier will multiply these data. As the inputs to the
multiplier are floating-point 17 bit data, hence we need to
design 17 bit floating-point multiplier. The output of the
multiplier is stored in the register bank. Architecture of
Floating-point Multiplier is shown is figure below

Figure 3. Floating-point Multiplier

In floating-point arithmetic, multiplication is a relatively
straight-forward operation compared to addition. The fields of
floating-point sign, mantissa and exponent do not interact
during multiplication operation and can be thus processed at
the same time, in parallel.

F. Floating-Point Adder
Floating-point adder is designed to add the multiplexer

data and the ROM data. The ROM data is nothing but the
weights of the respective inputs and multiplexer data, which is
stored in register after multiplication. The inputs to the
floating-point adder are from ROM output and multiplexer
output. As the inputs to the adder are 17 bit hence we need to
design 17 bit floating-point adder. The outputs of the floating-
point adder are stored in the register bank. [2]

Figure 4: Floating-point Adder

Addition is one of the most computationally complex
operations in floating-point arithmetic.
 The output of the adder is passed through the sigmoid
activation function which is the output of the software
neuron. All these modules were individually design, and were
complied and simulated which gives the software design of
the neuron. These same weights are recorded in the ROM
memory module of the neuron in hardware and are tested until
output is obtained. Thus the software neuron is implemented
on FPGA to obtain the hardware version of the software
version.

V. SIMULATION RESUTLS
The neuron is the heart of all the neural network calculation

i.e. multiplication of synaptic weights and their respective
inputs components. [7]

The waveform shows two inputs input_0 and input_1. The
input input_0 and ROM data of fist address is selected by the
multiplexer_0 and
 this two output of multiplexer_0 and given as an input to the
multiplier where this two inputs are multiplied and the output
is stored in the first memory location of the register bank_0.

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 2, 202

Then the second input_1 and the next weight is selected and
they are multiplied, which is stored in the second memory
location of the register bank_0. Then these two outputs are
added by the adder and are stored in the register bank_1. The
output is then applied to the nonlinear activation function.
Here we are using sigmoid as an activation function in its
Taylor series form.

Figure 5 .Simulation Result for single Neuron

VI. CONCLUSION

The modeling of single neuron can be recursively used to
implement a multilayer neural network. The new network
obtained can be further used in industrial processes. The
neural network implementation on Field Programmable Gate
Array will give us the hardware implementation of the sensor.
The hardware model obtained can be used in the on-line
industrial processes.

The current design implements a two layer structure, future
modification can have increase in number of neurons in
hidden layer between the input an output layers which will
improve the performance of network.
 The addition of hidden layer not only finely tunes the
network but also converges the weight value.

A. Units
Metric units are preferred for use in IEEE publications in

light of their global readership and the inherent convenience
of these units in many fields. In particular, the use of the
International System of Units (Systeme Internationale d'Unites
or SI Units) is advocated. This system includes a subsystem of
units based on the meter, kilogram, second, and ampere
(MKSA). British units may be used as secondary units (in
parentheses). An exception is when British units are used as

identifiers in trade, such as 3.5-inch disk drive.

B. Abbreviations and Acronyms
Define less common abbreviations and acronyms the first

time they are used in the text, even after they have been
defined in the abstract. Abbreviations such as IEEE, SI, MKS,
CGS, ac, dc, and rms do not have to be defined. Do not use
abbreviations in the title unless they are unavoidable.

See Appendix A of the Author’s Kit for additional
information and standard abbreviations.

C. Math and Equations
Use either the Microsoft Equation Editor or the MathType

commercial add-on for MS Word for all math objects in your
paper (Insert | Object | Create New | Microsoft Equation or
MathType Equation). "Float over text" should not be selected.

To make your equations more compact, you may use the
solidus (/), the exp function, or appropriate exponents.
Italicize Roman symbols for quantities and variables, but not
Greek symbols. Use a long dash rather than a hyphen for a
minus sign. Use parentheses to avoid ambiguities in
denominators.

Number equations consecutively with equation numbers in
parentheses flush with the right margin, as in (1). Be sure that
the symbols in your equation have been defined before the
equation appears or immediately following.

()1
32

21
021 ZZ

EJ
IAIIAIII A

AAACBF
+

−
=++=−==

where IF is the fault current.

Use "(1)," not "Eq. (1)" or "equation (1)," except at the
beginning of a sentence: "Equation (1) is .…"

VII. REFERENCES
[1].Marco A. Arroyo Leon, Arnoldo Ruiz Castro and Raul R.

Leal Ascencio “ An artificial neural network on a field
programmable gate array as a virtual sensor”. Jalisco ,
45090,MEXICO.

[2].Pavle Belanovic “Library of Parameterized Hardware
Modules for Floating-Point Arithmetic with An Example
Application” Boston, Massachusetts, May 2002.

[3].Galindo Hernandez Miriam L., Leal Ascencio R.R.
and Aguilera Galicia Cuauhtemoc “An Artificial Neural
Network on a Complex Programmable Logic Device
as a Virtual Sensor “, Technical Report, DESI, ITESO,
Guadalajara, Mexico, January 1998.

[4].Kishan Mehrotra, Chilukuri K. Mohan, Sanjay Ranka
“Elements of Artificial Neural Networks”.

[5].Haykin, S..Neural Networks: “A Comprehensive
Foundation”.IEEE Press, Macmillan, New York, 1994.

[6].Lippmann, R.A. “An introduction to computing with
neural nets”. IEEE ASSP Magazine, page 4-21, 1987.

[7].Stephen Brown, Zvonko Vranesic “Fundamentals of
Digital Logic with VHDL .”

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 2, 203

VIII. BIOGRAPHIES

Ms. Jayu Kalambe, born in Katol in India on
November 17, 1977. She graduated from the
Priyadarshini College of Engineering, Nagpur
(Maharashtra State) and studied her post
graduation in Electronics Engineering from
VNIT, Nagpur (Maharashtra State).
Her employment experience includes Seven
years of teaching at graduate level. She is having
to her credit many International and National
Conference papers. Her special fields of interest

include Neural Network and embedded system

Ms. Richa Khandelwal, born in Gwalior in India
on June 05, 1976. She graduated from Madhav
Institute of Technology and Science, Gwalior
(Madhya Pradesh) and studied her post graduation in
Electronics Engineering from Yeshwantrao Chavan
College of Engineering, Nagpur , (Maharashtra
State).
Her employment experience includes Seven years of
teaching at graduate level. She is having to her credit
many International and National Conference papers .

Her special fields of interest include communication system and Embedded
System

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India Vol. 2, 204

