
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract—Fault tolerance (FT) is a crucial design

consideration for mission-critical distributed real-time and
embedded (DRE) systems, which combine the real-time
characteristics of embedded platforms with the dynamic
characteristics of distributed platforms. Traditional FT
approaches do not address features that are common in DRE
systems, such as scale, heterogeneity, real-time requirements,
and other characteristics. This paper describes reflection
approach applied in DRE system for fault tolerance. We have
proposed an algorithm using combination of replication and
reflection technique to be applied in DRE system for fault
tolerance.

Index Terms-- fault tolerance, reflector, replication, active
replication, distributed real-time embedded systems

I. INTRODUCTION
istributed Real-time Embedded (DRE) systems are a
growing class of systems that combine the strict real-
time characteristics of embedded platforms (e.g.,

constrained resources and deadline criticality) with the
characteristics of distributed platforms (dynamic
environments). As these systems increasingly become part of
critical domains, such as defence, aerospace,
telecommunications, and healthcare, fault tolerance (FT)
becomes a critical requirement that must coexist with their
real-time performance requirements [2]. DRE systems have
several characteristics affecting their fault tolerance:

DRE systems typically consist of many independently
developed elements, with different fault tolerance
requirements. This means that any fault tolerance approach
must support mixed-mode fault tolerance (i.e., the coexistence
of different strategies) and the coexistence of fault tolerance
infrastructure (e.g., group communication) and non-fault
tolerance infrastructure (e.g., TCP/IP). DRE systems stringent
real-time requirements mean that any fault tolerance strategy
must meet real-time requirements with respect to recovery and
availability of elements and the overhead imposed by any
specific fault tolerance strategy on real-time elements must be
weighed as part of the selection of a fault tolerance strategy
for those elements. DRE applications are increasingly
component-

Archana Kale, Asst.Professor, archiekk@yahoo.co.in,
Ujwala Bharambe1 Lecturer,ujwala.b@gmail.com
Dept. of IT, Thadomal Shahani Engineering College, Bandra(w), Mumbai-50.

oriented, so that fault tolerance solutions must support
component infrastructure and their patterns of interaction.
DRE applications are frequently long-lived and deployed in
highly dynamic environments. Fault tolerance solutions
should be adaptable at runtime to handle new elements [1][4].

There have been different types of approaches for fault
tolerance:

• Graph based scheduling/distribution heuristics
These types of heuristics[6] [7] [8] combine real-time
constraints, distribution constraints, algorithm
specifications (operations and data dependencies) with
architecture specifications (processor and communication
link). The distribution constraints assign a set of
processors to each operation (along with value of
execution duration) of the algorithm graph and produce
static distribution schedule followed by real time
distributed executives. Synchronization between
processors is stated by algorithm specifications.
• CORBA-Based Fault tolerance approaches :
DRE systems with hard real-time requirements [11] have
been developed with the CORBA middleware for run-
time support to automate many distributed computing
tasks. QoS requirements of DRE systems, particularly
dependability and predictability, are addressed by the
OMG’s Fault tolerant [9] and Real-time CORBA [10]
specifications. But this approach has several
challenges[12] i.e. Non-determinism, Expensive
Replication, Inablity to meet requirements of fault
tolerance and Semantic Incompatibilities Between
features of CORBA versions, Lack of Standards to
Handle Byzantine and Partial Failures, Lack of Standard
End-to-end QoS Configurability etc.
• Middle ware based Semi active replication &

Replica Communicator:
Further modifications have been made which describe
extensions and solutions to achieve fault tolerance. Semi-
active replication[12] ,Model engineering[13], Self
configurative replica manager[1], Meta object
architecture[14] and reflection. Reflection been proposed
during the last decade as a fruitful paradigm to separate
non-functional aspects from functional ones, simplifying
software development and maintenance whilst fostering
reuse.

Fully reflective databases are not feasible due to the high cost
of reflection. So we have proposed a fault tolerant solution for
DRE system which is combination of both Replication and

Archana Kale and Ujwala Bharambe

Fault Tolerant Approach for Distributed Real-
Time and Embedded System using Reflection

D

 Vol. 2, 205

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

reflection. We have considered basic architecture of
distributed systems and proposed one new innovative
technique for fault tolerance using replication and reflection.

II. CHALLENGES IN PROVIDING FAULT TOLERANCE
IN DRE SYSTEMS

We first motivate our work by describing the fault-model
and general approach under which our system operates. In
providing fault tolerance for any DRE System there are
following challenges, specifically [1]:

• Communicating with replicas in large scale, mixed
mode systems

• Handling dynamic system reconfigurations
• Handling peer-to-peer communications and

replicated clients and servers.

A. Fault-Model and Fault Tolerance Approach
A fault model describes the types of failures we expect our

system to deal with. By being specific about our fault model,
we make clear the types of failures the system is designed to
handle.
For our solution, we assume that all faults are fail-stop at the

process level. When an application process fails, it stops
communicating and does not obstruct the normal functioning
of other unrelated applications. Network and host failures can
be seen as a collection of process failures on the element that
has failed.
We tolerate faults using replication strategies. In these

schemes, we use multiple copies of an application called
replicas to deal with failures of the applications. There are two
types of replication strategies: active replication and passive
[16] replication. We use the active replication strategy where
all replicas need to be deterministic in their message output,
and each replica responds to every input message. Our
solution ensures that only a single request or response is seen
regardless of how many actual replicas are used. Though it
uses active replication, we maintain only one leader (the one
which has the minimum load) replica that responds to the
messages and shares its state with any other non-leader
replicas, so they can take the leader’s place in case of a
failure. We call all replicas as active replicas because when
any request comes from the client, all these replicas will
perform that job independently and only the leader and the
reflector replica will receive all the results from all active
replicas. Depending upon system operational modes (our
proposal) leader will send reply to client.

Fault Detection: For designing fault tolerance system, fault

categorization is required. We have considered specifically
only process level faults in DRE system, which can be
categorized as-

1. Execution domain faults:
 Caused within the software other than algorithm
logic; such as memory leakage, segmentation fault, divide
by zero error, spin in an infinite loop, deadlock, and live
lock etc.
2. Logic Domain faults:

 Usually caused by the logic of the underlying
algorithm itself, that defines the computational logic.
We have considered the execution domain faults in DRE
Systems. When such a fault occurs, rather than recovering
that process we consider takeover of the system by other
non-faulty process.

B. System Model
 We assume a conventional client / server model where
servers process client requests and return the results of this
processing. Servers encapsulate data (their state) and code
(describing the services they offer to clients) [3]. When a
service request is received, an "execution point" appears
within the server. This execution point travels through the
code, processes the received request, possibly modifies the
server's state, and possibly produces a reply that is returned to
the client. We also assume that every job will have single
process and every process will have some intermediate values
(value set). In this section, we don't make any assumption
about the nature of servers, but we assume that server replicas
are "distributed" so that they do not fail simultaneously. Our
notion of server is very similar to those of "replication
entities" or "distributed processes" commonly found in works
on distributed algorithms.

C. Basic Concept
In this paper we try to apply replication and reflection to

DRE system for fault tolerance.

Reflection can be defined as the property by which a
component enables observation and control of its own
structure and behavior from outside itself.

A reflective system is basically structured around a
representation of itself —or meta-model — that is causally
connected to the real system [2]. This approach divides the
system into two parts: a base-level where normal computation
takes place and a meta-level where the system computes about
itself (meta-computation or metalevel software). (See Fig.1)

Fig. 1. Organization of a Reflective System

The meta-model results from the interactions between the
base-level(application), and the meta-level (fault-tolerance).
These interactions (see Figure 1) are classified as follows:
1. Reification: initiated by the base level to provide
information to the meta-level.

 Vol. 2, 206

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

2. Introspection: initiated by the meta-level to obtain
information from the base-level.
3. Behavioral intercession: initiated by the meta-level to
modify the behavior of the base-level.
4. Structural intercession: initiated by the meta-level to
modify the state of the base-level.

III. FAULT TOLERANT SOLUTION
We are considering n total nodes in distributed system.

Total connectivity has to be √n + 1 i.e for every node √n
other nodes will maintain replication and one node will
maintain reflection.

Fig. 2. Topology

The basic idea behind this topology is that in all n nodes

[(√n+1)-1] nodes will maintain virtual active replicas and only
one will maintain reflection .The use of multiplicity of √n + 1
nodes is to achieve fault tolerance of √n at every step. .

The basic algorithm is described in next section.

A. Basic Algorithm
System specification:

Consider DRE system with sites Si= {1…n}
 Connectivity:
 N nodes are √n+1 connected.
System Operational modes:

Fig. 3. System Operational Modes

The system modes of operation can be described as the

three phases depicted in Fig.3. Parameters involved in the
system can be represented by a “Value set”. Value set is
intermediate stable snap shot or cut of the process in
execution. We here by represent Value set in generic way by
using subset of alphabets {x,y,z,w}. We are considering group
communication system (GCS) as FIFO causal order multicast
system. Consistency criteria vary for different modes across
all replicas and it depends upon the number of entities in value
set. Partial overlap consistency criteria for different
operational modes are described below:

Normal mode: The system is said to be in normal mode if at
least 75% overlap consistency should be maintained across all
replicas and at least one replica has completed its execution
(100%). The system can send reply to the client in the normal
mode

 P1= {x,y,z,w}
 P2= {x, y,z ---}
 P3= {x, y, z,-}

Fig.4. Normal Mode

Degraded Mode:
If there is any type of failure or there is any inconsistency then
the system is said to be in degraded mode

P1= {x, y, ----} P1= {x, y, ----}
P2= {x------} OR P2= {x------}
P3= {x, y, a, ---} P3= {} no responce

Fig.5.Degraded Mode

 Vol. 2, 207

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

In above case the system will go in the degraded mode when
P1 and P2 values reach the expected value z and the value of
P3 i.e. a is inconsistent with z or P3 fails to respond.

Reconciliation Mode:
Abort either by primary or by reflector on two basic
conditions- No response and Inconsistent state.

P1= {x, y, z,-}
P2= {x, y, ---}
P3= {x, y, I,--}

From the degraded mode the system goes into
reconciliation mode where the abort message is sent to abort
the inconsistent process (P3 in the above example) and a
request is sent to another processor from the Queue for which
it is mandatory to maintain only 66% consistency to meet its
deadline.

P3 is then pushed to the bottom of Queue at primary and
reflector as least preferred node for selection in later
executions.

Fig.6. Reconciliation Mode:

• Site Si (S1-----Sn). Every site will maintain Queue

consisting (n-1) sites.
• Queue is ordered initially based on hop distance and

later changes dynamically depending on reachability
and response time.

• When request arrives for Job J at site Si (primary)
then

If
Si load > lb (Load threshold)

 Then send request to reflector
Reflector will choose less loaded site and
forward that request.

 Else
Si will remove [|(√n+1)|-1] sites from Queue
and send request message to [|(√n+1)|-1]
replicas and one reflector .

• All sites Sj who receive request from site Si will start
execution and intermediate results are sent to Si and
reflector.

• Site Si will receive intermediate values (value set)
and it calculates Overlap consistency accordingly.
o If there is no response from any site, then abort

message is sent to the node and the queue
reconstructed and the node is put in the end.

o If system is in normal mode (75 % consistency
maintained) & any one of the processes finishes
its work then Si will send reply to the client

o If system is in degraded mode (less that 75 %)
then hold the results and wait for further reply
from replicas.

o If System is in Reconciliation mode then it will
enter in normal mode only when the old
replicas maintain 75% consistency and the new
replica maintain at least 66 % consistency and
there by protecting deadline

 Reflector: When it receives reply from other sites it will
calculate overlap consistency but if process is giving
inconsistent values or it is giving no response then it will send
abort message. Reflector will also maintain load and history of
each node.

Meta Model:

1. Reification: All members in the group will send all
intermediate values to meta level of reflector.

2. Introspection: Reflector will send request
periodically to all members to send the information
regarding load to decide to threshold.

3. Behavioral intercession: Load threshold will get
decided by reflector based on analysis and that
threshold will be sent to each member of the group.

4. Structure intercession: If there is no response from
any site or the overlap consistency is inconsistent
then reflector can send abort message to that site.

B. Failure Scenarios
If Site Si (primary) fails

Then reflector will choose another site as primary
and will send value set to new primary.

If reflector fails
Then Si (primary) will choose another site as a
reflector and send the value set to new reflector.

If any other sites fails
Then primary will choose another site for further
processing and system will enter in reconciliation
mode. The failed site is pushed to the bottom of
Queue at primary and reflector as least preferred
node for selection in later executions.

IV. CONCLUSION AND FURTHER WORK
This paper proposes a new algorithm for fault tolerance in

DRE Systems using combination of reflection and replication.
This algorithm is based on partial overlap system consistency
criteria on which the system operational modes are based
(Normal, Degraded and Reconciliation.).The proposed
algorithm has √n concurrent executions and one reflector per
real time process execution.

 Vol. 2, 208

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

The following table gives comparison of various techniques

for fault tolerance:

Approach Advantage Disadvantage
Graph based
scheduling/di
stribution
heuristics

-Redundant
hardware is not
required.
-Due to use of
active redundancy
computation
Explicit replication
is not required.

-Complex

CORBA-
Based Fault
tolerance
approach

- Support for
highly available
systems
- End-to-end
predictable
behavior for
requests

-Excessive
overhead for
embedded
systems.
-Overly complex
& difficult to
Integrate.

Middle ware
base Semi
active
replication

-Provides support
for active &
passive replicas.
-Cross version
mapping.

-Weaker
consistency
model.
-Single point
failure at
middleware as
replication
manager and
synchronizer.

Replica
Communicat
or

-No overhead on
non replica clients.
-Self configuration
of replica
communication.
-Multitier solution
for various DRE
systems.

-Low
performance.
-High
consistency
overhead.
-Single point
replica
communicator
failure.

Our
Approach

-√n concurrent
replica executions
and one reflector.
-High availability.
-Partial overlap
based consistency.

-Dynamic
reconfigurations.
-Need of
frequent updates
of node status.

Use of √n concurrent replica executions and one reflector in

the proposed purely distributed approach is suitable for
providing fault tolerant deadlines. The possibility of deadline
failure exists in two conditions - a) None of the processes on
any replica is complete in the prescribed time and b) the
replicas do not complete 66% tasks in the said time. The
theoretical probability of such a situation is very low but this
needs to be practically tested further for feasibility.

Dynamic reconfiguration of queue for selection avoids
repeated selection of highly loaded and non-responsive nodes
for further real-time processes executions there by making
deadlines criteria easier to meet.

V. REFERENCES

[1] Paul Rubel, Aniruddha Gokhale, Aaron Paulos ,Matthew Gillen
Jaiganesh Balasubramanian Priya Narasimhan,, " fault tolerant
approaches for distributed real-time and embedded systems” to be
published

[2] Paul Rubel, Joseph Loyall, Richard E. Schantz, Matthew Gillen,“fault
tolerance in a multi-layered dre system: a case study” journal of
computers, vol. 1, no. 6, september 2006

[3] François Taïani, Jean-Charles Fabre, Marc-Olivier Killijian, “Towards
Implementing Multi-Layer Reflection for Fault-Tolerance” ,DSN-2003
The Internatl. Conf. on Dependable Systems and Networks — San
Francisco USA June 22nd - 25th, 2003.

[4] Jaiganesh Balasubramanian, Dr. Aniruddha Gokhale, Dr. Douglas C.
Schmidt, Dr. Nanbor Wang,” Investigating Lightweight Fault Tolerance
Strategies for Enterprise Distributed Real-time
EmbeddedSystems”.Available:http://www.omg.org/news/meetings/work
shops/RT_2006_Workshop_CD/01-1_Balasubramanian.pdf

[5] M. Baleani, A. Ferrari, L. Mangeruca, M. Peri, S. Pezzini, and
A. Sangiovanni-Vincentelli. Fault-tolerant platforms for automotive
safety-critical applications. In International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES'03, San
Jose, USA, November 2003. ACM.

[6] A. Girault, C. Lavarenne, M. Sighireanu and Y. Sorel, "Fault-Tolerant
Static Scheduling for Real-Time Distributed Embedded Systems," In
Proc. of the 21st International Conference on Distributed Computing
Systems(ICDCS), Phoenix, USA, April 2001.

[7] http://pop-art.inrialpes.fr/~girault/Projets/FT/ visited 2/1/08
[8] Y.sareal Massively parallel computing system with real real time

constraint the “ algorithm architecture adequation “methodology .In
Massively Parallel computing System s Conference, Iachia,Italy ,May
1994

[9] Object Management Group, Fault Tolerant CORB A Specification,
OMG Document orbos/99-12-08 edition, December 1999.

[10] Object Management Group, Real-time CORBA Joint Revised
Submission, OMG Document orbos/99-02-12 edition, March 1999.

[11] Douglas C. Schmidt, “R&D Advances in Middlewarefor
Distributed,Real-time,and Embedded Systems,” Communications of the
ACM special issue on Middleware, vol. 45, no. 6, June 2002.

[12] Balachandran Natarajan, Aniruddha S. Gokhale Douglas C. Schmidt
[13] Chris D. Gill,” Towards Dependable Real-time and Embedded

CORBASystems“,Available:http://www.cs.wustl.edu/~schmidt/PDF/W
DMS02.pdf

[14] SumantTambe,AniruddhaGokhale,Jaiganesh
Balasubramanian,Krishnakumar Balasubramanian,Douglas C. Schmidt
“Model-Driven Engineering of Fault Tolerance Solutions in Enterprise
Distributed Real-time and Embedded
Systems”,Available:www.omg.org/news/meetings/workshops/RT_2006
_Workshop_CD/04-3-Tambe.pdf

[15] Jean-Charles Fabre” A Metaobject Architecture for Fault Tolerant
Distributed Systems”

[16] Douglas C. Schmidt,” R&D Advances in Middleware for Distributed
Real-time and Embedded Systems: Communications of the ACM special
issue on Middleware, vol. 45, no. 6, June 2002.

[17] Budhiraja, N., Marzullo, K., Scneider, F., Toueg, S.: 8. ACM
Press, Frontier Series. In: The Primary-Backup Approach. (S.J.
Mullender Ed.) (1993)

 Vol. 2, 209

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

VI. BIOGRAPHIES

Archana Kale has received B. E degree in
Computer Engineering from pune university with
first class in year 1992 , M.Tech (CSE) from IIT
Bombay in year 2001. Currently working as
H.O.D and Assistant Professor in department of
Information Technology at Thadomal Shahani
Engineering college Bandra (W) and has a
teaching experience of 14 years.

 Ujwala Bharambe has received B.Tech IT degree
from S.N.D.T university with first class in year
2001. Currently pursuing M.E in Computer
engineering, university of Mumbai. She has more
than 5 years of experience in teaching. Currently
working as lecturer in department of I.T at Thadomal
shahani engineering college.

 Vol. 2, 210

