
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract—In this paper, an algorithm of ancient Indian Vedic

mathematics, has been implemented on a new multiplier for low
power, high speed applications which is a space and time space
efficient method. The algorithm ‘Urdhava Tiryakbhyam’ is
modified to generate concurrent carry for the next stage. It is
based on the generation and addition of concurrent partial sums
produced within the proposed Matrix representation
architecture. The algorithm is useful for math coprocessors in
the field of computers. Algorithm is implemented on SPARTAN-
II FPGA (Field Programmable Gate Array). The speed
improvements gained due to the proposed algorithm and the
concurrency characteristic of the proposed Matrix
representation architecture enable large saving of resources in
FPGA applications.

Index Terms—Booth Algorithm, Array Multiplier, VHDL

I. INTRODUCTION
INARY arithmetic multiplication has been a very
important issue for almost all the microprocessor and

microcontroller manufacturers. Multiplication is most often an
operation which consumes the most of the processor time.
Although multiplication techniques such as ‘Booth Algorithm
Multiplier’ have been effective over conventional ‘Array
Multiplication’ technique, their disadvantage of time
consumption has not been completely removed. The Matrix-
Diagonal method of binary multiplication overcomes these by
reducing processing time with effective use of concurrency in
computation. The space utilization is also optimized by this
method. Matrix-Diagonal method of binary multiplication
uses matrix arrangement of representation of two binary
numbers. The two numbers are then concurrently viewed
bitwise in an order suggested in Vedic mathematics. Logical
AND operation output at every node is then summed up
diagonally and its carry transferred to the next stage. Half
adders are constantly used instead of full adders in an attempt
to optimize space constraint without any effect on
performance.

Prashant Nair is with Department of Electronics Engineering at Sardar

Patel Institute of Technology, Mumbai 400058 INDIA.
(e-mail:parthos17@gmail.com).

Darshan Paranji is with Department of Electronics and Telecomm.
Engineering at Sardar Patel Institute of Technology, Mumbai 400058 INDIA.
(e-mail:daaru1947@yahoo.com).

S. S. Rathod is with Department of Electronics Engineering at Sardar Patel
Institute of Technology, Mumbai 400058 INDIA.
 (e-mail: rathod_spce@yahoo.com).

II. VARIOUS MULTIPLICATION ALGORITHMS
There are various algorithms suggested for efficient

multiplication of binary numbers [1] [2] [3] [4]. The most
popular and efficient algorithms available are the Array
multiplication and Booth Multiplication Algorithm.

A. Array Multiplication Algorithm
This multiplication algorithm [1] is analogous to the one

we do in day-to-day life. This algorithm for multiplication of
two four bit numbers is explained as follows.

For example
 1 0 1 0 {10}
 x 1 1 0 1 {13}
 ⎯⎯⎯⎯
 1 0 1 0
 0 0 0 0
 1 0 1 0
 1 0 1 0
 ⎯⎯⎯⎯⎯⎯

 = 1 0 0 0 0 0 1 0 {130}

An array multiplier algorithm:
1. Start
2. A: A3 A2 A1 A0

B: B3 B2 B1 B0
X: X3 X2 X1 X0 (each 4-bit registers)
Y: Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

3. for i: 0 to 3
if Bi = 1
 Xi = A
 Shift left Xi ‘i’ times

4. for i: 0 to 3
Y = Y + Xi

5. Result is stored in Y
6. Stop
This algorithm uses the Adder numerous times and has the

disadvantage of using a 2n bit adder for a n bit multiplication.
Thus time taken for the execution of algorithm will be more.

B. Booth Multiplication Algorithm
Booth’s multiplication algorithm [5] is extensively used in

many computing machines. This algorithm was invented by
Andrew Booth in 1951. This algorithm is particularly useful
for machines that can shift bits faster than adding them.

VLSI Implementation of Matrix-Diagonal
Method of Binary Multiplication

Prashant Nair, Darshan Paranji and S. S. Rathod

B

 Vol. 2, 55

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

If x is the count of bits of the multiplicand, and y is the
count of bits of the multiplier:

• Draw a grid of three rows, each with columns for x +
y + 1 bits. Label the lines respectively A (add), S
(subtract), and P (product).

• In two's complement notation, fill the first x bits of
each line with :

o A: the multiplicand
o S: the negative of the multiplicand (in 2's

complement format)
o P: zeroes

• Fill the next y bits of each line with :
o A: zeroes
o S: zeroes
o P: the multiplier

• Fill the last bit of each line with a zero.
• Do both of these steps y times :

1. If the last two bits in the product are...
 00 or 11: do nothing.
 01: P = P + A. Ignore any

overflow.
 10: P = P + S. Ignore any overflow.

2. Arithmetically shift the product right one
position.

• Drop the first (we count from right to left when
dealing with bits) bit from the product for the final
result.

Booth Multiplier has been used popularly in
microprocessor Arithmetic and Logical Units for binary
multiplication. This algorithm is also noted as one of the
highly efficient algorithms.

C. Proposed Matrix Diagonal Algorithm
The proposed matrix diagonal multiplication uses the

algorithm of vedic mathematic multiplication using Urdhava
Tiryakbhyam [2] [3] [4]. The algorithm is based on the
creation of partial products is done on the concurrent addition
of these partial products. The parallel concurrent action is due
to the use of ‘Urdhava Tiryakbhyam’. The action for a 4 x 4
bit multiplication is explain in Fig. 1.

Fig. 1. Multiplication using Urdhava Tiryakbhyam technique

This algorithm can be generalized for an n x n bit
multiplication. The multiplier will work independent of clock
frequency. Although the advantage of higher clock frequency
is increased processing power, it has several disadvantages
like higher power dissipation.

The proposed Matrix-Diagonal algorithm is an extension of
this Vedic technique. It uses a novel form of data
representation to optimize results. This form of representation
is for a 4 x 4 multiplier is shown in the Fig. 2.

 Fig. 2. Multiplication using Matrix-Diagonal Algorithm

 The carry generated at every summing node is stacked in the
next stage, which will be added along with the other nodes in
the next stage. This process also saves ALU space and is thus
a truly efficient method. Thus, we can see that this structure
when implemented for n x n multiplier will prove to be a time
efficient and a space efficient solution. The multiplier has the
advantage as the number of bits increases the gate delay and
area increases very slowly compared to other multipliers.
Thus this architecture is efficient in terms of silicon
area/speed.

III. VLSI IMPLEMENTATION AND RESULTS
The algorithms discussed in section II are implemented

using Active-HDL [6] VHDL [8] simulator. The synthesis and
implementation is done by using Xilinx ISE 8.0 [7]. The
algorithms are implemented on Xilinx FPGA SPARTAN-2
device 2s30pq208-5.

 The array multiplier was implemented with regular shift
and adds partial product logic. The VHDL simulation
waveforms generated are as shown in the Fig. 3 and found
functioning normally. The technology schematic generated
using synthesizer is shown in Fig. 4 and the placement-routing
results generated are shown in Fig. 5. The Fig. 5 indicates the
amount of resources utilized from the selected FPGA when
array multiplier is implemented.

 Vol. 2, 56

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 3. VHDL Simulation Results of Array Multiplier

Fig. 4. Xilinx Synthesis Results of Array Multiplier

Fig. 5. Placement and Routing Results of Array Multiplier

The more efficient Booth algorithm multiplier VHDL
simulation waveforms are as shown in the Fig. 6 and found to
be correct. The multiplier is designed for two 4 bit numbers.
The results can be extended for n bit numbers as well. The
disadvantage of this multiplier is that it requires at 4 states of
the internal clock perform multiplication. Fig.7 shows
technological schematic and Fig. 8 is the generated result of
placement and routing for the selected FPGA when Booth
Multiplier is implemented. One can easily see from the
placement and routing result in the figure that, in spite of its
efficiency, this multiplier consumes space and hardware.

Fig. 6. VHDL Simulation Results of Booth Multiplier

Fig. 7. Xilinx Synthesis Results of Booth Multiplier

Fig. 8. Placement and Routing Results of Booth Multiplier

The proposed Matrix-Diagonal multiplier was implemented

with concurrency in VHDL and its simulation waveforms are
as shown in the Fig. 9. From simulation results we can easily
observe that concurrency is one of the prime features for the
increased efficiency of the matrix multiplier. Fig.10 shows
technological schematic and Fig. 11 is the generated result of
placement and routing for the selected FPGA when Proposed
Matrix-Diagonal Multiplier is implemented. It is clear from
Fig. 5, Fig. 8 and Fig. 11 that the less resources are utilized
from FPGA as compared to Array multiplier and Booth
multiplier.

 Vol. 2, 57

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 9. VHDL Simulation Results of Matrix-Diagonal Multiplier

Fig. 10. Xilinx Synthesis Results of Matrix-Diagonal Multiplier

Fig. 11. Placement and Routing Results of Matrix-Diagonal Multiplier

TABLE I

COMPARISION OF SYNTHESIS RESULTS

Algorithm Array Booth Matrix-
Diagonal

Delay 72.564ns 72.452ns 34.950ns
Device Utilization

Slices: 17 out of
432 (3%)

31 out of
432(7%)

27 out of
432 (6%)

4 input LUTs 30 out of
864 (3%)

57 out of
864 (6%)

47 out of
864 (5%)

Bonded IOBs 17 out of
136 (12%)

17 out of
136 (12%)

16 out of
136 (11%)

IV. CONCLUSIONS
Table I indicates that the delay in multiplication is almost

halved in the proposed Matrix-Diagonal multiplication
implementation; this is primarily due to concurrency. Further,
the proposed Matrix-Diagonal multiplication is space efficient
too as compared to Booth multiplier implementation. Thus
Matrix-Diagonal Multiplier is faster than Array and Booth
Multiplier. Due to factors such as timing efficiency, speed and

lesser area, Matrix-Diagonal Multiplier can be implemented in
Arithmetic and Logical Units replacing traditional multipliers.
The speed improvements are gained due to concurrency and
such a design must enable large saving of resources when
used in FPGA for digital signal processing and image
processing.

V. ACKNOWLEDGMENT
The authors gratefully acknowledge the facilities provided

in VLSI Laboratory of Electronics Engineering Department,
Sardar Patel Institute of Technology, Mumbai.

VI. REFERENCES
[1] Kevin Biswas, "Multiplexer Based Array Multipliers," A Ph.D.

Dissertation, University of Windsor, Electrical and Computer
Engineering, Apr. 2005.

[2] Himanshu Thapliyal and Hamid R. Arabnia, "A time area power
efficient multiplier and square architecture based on ancient Indian
Vedic mathematics," www.vedicmathsindia.org.

[3] Vishal Verma and Himanshu Thapliyal , “High Speed Efficient N X N
Bit Multiplier Based On Ancient Indian Vedic Mathematics”,
Proceedings International Conference On VLSI, Las Vegas, June 2003.

[4] A.P. Nicholas, K.R Williams, J. Pickles ,“Application of Urdhava
Sutra”, Spiritual Study Group, Roorkee (India),1984

[5] Stephen Brown and Zvonko Vranesic, "Fundamentals of digital logic
with VHDL design," 1st Ed. New York: McGraw-Hill, 2007

[6] “Active-HDL 7.2User Manual”, Active HDL Inc, USA, 2007.
[7] “Xilinx ISE User Manual”, Xilinx Inc, USA, 2007
[8] “VHDL Reference Manual”, IEEE standard, 1993

VII. BIOGRAPHIES

Prashant Nair (M’2007) was born in Mumbai in
India on 1987. He is graduate student of
Electronics Engineering Department of Sardar
Patel Institute of Technology, Mumbai. He won
many awards in various competitions. He is also a
member of IEEE and Head of Activities of
Electronics Students Association. His area of
interest includes microelectronics, robotics and
VLSI design and embedded systems.

Darshan Paranji S (M’2007) was born in
Chennai in India on 1988. He is graduate student
of Electronics and Telecommunication
Engineering Department of Sardar Patel Institute
of Technology, Mumbai. He won many awards in
various competitions. He is also a member of
IEEE. His area of interest includes VLSI, wireless
communication and networking.

S. S. Rathod (M’2007) was born in Amravati in
India on Feb 28, 1975. He graduated from the
College of Engineering Badnera, and completed
his post graduation in the field of Electronics
Engineering from V.J.T.I., Mumbai-India.
Currently he is pursuing his doctoral research at
Indian Institute of Technology, Roorkee-India.

His employment experience includes eight
years as an educationalist. He has published more

that 20 papers in various national and international conferences. His special
fields of interest include VLSI Design, process and device modeling. His
name is listed in the science category of Marques Who’s Who USA. He
received outstanding achieving ward by the Energy Society, India. He is
member of IEEE, ISTE and ISNT.

 Vol. 2, 58

