
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract--This paper describes an image processing system

developed to work on an FPGA (Field Programmable Gate
Array). FPGAs have the advantages of speed and
reconfigurability over DSP, specifically required for video
processing applications. The research work done on color image
processing techniques using FPGA is limited. The aim of this
research is to simulate and implement color image processing
techniques namely pseudocolor processing, smoothing filter,
median filtering and edge detection masks on FPGA. This
simulation is carried out by establishing a link between
MATLAB and a Hardware Description Language (HDL).
Comparison of HDL simulation results show similarity with
those obtained from standardized MATLAB functions.

Index Terms—Color Images, FPGA, VLSI, Image Processing.

I. INTRODUCTION
N the recent times, Field Programmable Gate Arrays have
become a viable target for the implementation of various

algorithms related to color video image processing
applications. The unique architecture of FPGA supports many
applications concerning high speed processing. With increase
in image sizes, the use of software for image processing are
being replaced by real time systems required for high speed
image and video processing. Specialized image processing
programs cannot adequately process very large amounts of
streaming data on PCs since they have been designed for
general purpose applications. In order to achieve further
optimization, hardware devices need to be used. Increase in
FPGA speeds and capacities have followed or exceeded
Moore’s law for the last several years.

Faheem Desai is with Department of Electronics Engineering at Sardar
Patel Institute of Technology, Mumbai 400058 INDIA.
(e-mail:faheemd2001@yahoo.com).

Rohit Bhat is with Department of Electronics Engineering at Sardar Patel
Institute of Technology, Mumbai 400058 INDIA.
(e-mail:bhatrohit2000@yahoo.com).

Harsh Shah is with Department of Electronics Engineering at Sardar Patel
Institute of Technology, Mumbai 400058 INDIA.
(e-mail:hardison87@yahoo.co.in).

S. S. Rathod is with Department of Electronics Engineering at Sardar Patel
Institute of Technology, Mumbai 400058 INDIA.
 (e-mail: rathod_spce@yahoo.com).

P.V. Kasambe is with Department of Electronics Engineering at Sardar
Patel Institute of Technology, Mumbai 400058 INDIA.
(e-mail:p_vasantrao@rediffmail.com).

FPGAs do not have inbuilt cache mechanisms. They are

usually connected to a number of local memories so as to
maximize throughput. However, the available space in FPGA
imposes a restriction on the size of a block of code which is to
be executed in a single clock cycle. As long as the code fits on
the chip, the performance of the FPGA is largely based on
Memory Traffic and Clock Frequency. Results have shown
that complex tasks have resulted in very large speedups as
high as 800 by utilizing the parallelism within FPGAs [3]. Our
goal is to familiarize application programmers with the state
of the art in compiling programs using hardware description
language to FPGA and to show ho w FPGAs implement a
wide range of color image processing applications.

II. METHODOLOGY
 The FPGA based designing approach is via two HDLs –

VHDL and Verilog. The limitation of HDL programming is
the difficulty in implementing algorithmic expressions that
takes place in applications programming. The Cameron
project’s SA-C (Single Assignment C language) and
Celoxica’s Handel C are two popularly used cross-compilers
which map high-level algorithmic language on reconfigurable
hardware [2]. However, VHDL was chosen in this paper due
the flexibility and controllability it offers, over timing
constraints and hardware.

This paper studies two methodologies to simulate a link
between an Image Acquisition System and an FPGA device
namely Direct Software Link and File I/O routines. MATLAB
was chosen as the image end software due to its capability to
work directly with matrices. The MATLAB environment is
much suited for PC based image processing applications.
MATLAB allows the designer to treat a color image as a 3-
dimensional matrix of red, green and blue information of 8
bits each and develop optimized matrix operations. In this
paper, MATLAB is used for rasterization of color image into
pixels .These pixels are then transported to required HDL
simulation software via the two discussed methodologies.

A. Direct Software Link
This link establishes a connection between Model-Sim and

MATLAB through software protocols [2]. 8bit ports are
defined both in MATLAB and Model-Sim. Initialization file
for Model-Sim is defined to implement handshake signals for
synchronous transfer. A GUI is built to feed in the input
image file and designate the output VHDL file. The

FPGA-based Implementation of Color Image
Processing Techniques

F. S. Desai, R. R. Bhat, H. N. Shah, S. S. Rathod and P. V. Kasambe

I

 Vol. 2, 59

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

communication “.m” file handles the actual transfer of 8bits
per a common clock cycle. The R-Matrix, G-Matrix and B-
Matrix can be sent in successive streams as well as in parallel
form required for certain applications.

B. File I/O Routines
This link uses the file handling capability of EDA software

to simulate the transfer of image date to an FPGA [1].
MATLAB is used to save the image matrix as binary text file
having every word on a new line. The VHDL file read routine
is then used to access the file serially and save it using the
write routine after processing. MATLAB is then again used to
access this file and save it as the transformed image file.

III. RESULTS AND DISCUSSIONS

Using the links discussed in section II, a transfer was
established to Model-Sim and following color image
processing applications were simulated and observed:

A. Pseudocolor Image Processing
This technique consists of assigning colors to gray values

based on specified criterion. The principal use is for human
visualization and interpretation of grayscale events in an
image or sequence of images. An example of such a technique
is intensity slicing [4].

Fig. 1. Geometrical interpretation of intensity –slicing technique

Figure shows a plot of gray scale intensity versus spatial
coordinates. The method consists of placing planes parallel to
the coordinate plane of the image. Each plane then slices the
function in the area of intersection. If a different color is
assigned to each side of the plane, every pixel in a particular
range of gray intensity will have a corresponding color value
coded to it.

A biomedical application for this technique is the pseudo-
coloring of the Picker Thyroid Phantom test pattern which has
been implemented in this simulation. The gray scale values of
this test pattern image are sent to the VHDL routine. This
routine divides the gray plane into 8 different intensities.
These intensities are assigned 8 values with white indicating
the highest intensity and black indicating lowest. The color
pixel values are then obtained in MATLAB and saved as an
image file. Fig. 4 shows RTL schematic after

Fig. 2. Results from HDL simulation of intensity slicing

Fig. 3. Results from MATLAB simulation of intensity slicing

Fig. 4. RTL schematic after synthesis of pseudocoloring on Xilinx ISE

B. Median Filtering
Median filter is an order statistics filter which is spatial in

nature whose response depends on ordering the pixels
contained in the image area covered by the filter [4]. The
process of median filtering is useful for restoration of images
corrupted by salt and pepper noise and also to bring about
smoothing of other noise that may not be impulsive. Median
Filtering is more effective than convolution when the goal is
to simultaneously reduce noise and preserve edges. Median
filtering is achieved using a windowing operator.

This pixel window may be of any size or shape. The
efficiency of noise filtering increases as the size of window
increases. This paper employs a 3x3 pixel window as it is
large enough to give accurate results. At the same time it is
small enough and can be efficiently implemented on FPGA

 Vol. 2, 60

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

without memory restrictions. The entire 3x3 area of the
window is used to calculate the output value and the origin
pixel is replaced by this value. In median filtering, the median
of the 9 values within the window is found out and applied to
the origin pixel. This window is scanned over each and every
pixel of the image until all the pixels have been ‘filtered’.

The simulation in this paper uses the color photograph
corrupted by salt and pepper noise of 0.02dB. The rasterized
pixel values within the window operator are passed onto
VHDL routine. The routine uses bubble sort technique to
arrange the 9 pixels in ascending order. The median value,
obtained from the middlemost element is the output pixel. In
this manner all the pixels scanned and filtered by moving the
window with each scan. The output image thus obtained
becomes devoid of noise.

Fig. 5. Results from HDL simulation of median filtering.

Fig. 6. Results from MATLAB simulation of median filtering.

C. Smoothing Linear Filters
Smoothing filters are mainly used for blurring and noise
reduction [4]. The output of a smoothing, linear spatial filter is
the average of the pixels contained in the neighborhood of the
filter mask. This process results in an image with reduced
sharp transitions in color intensity levels.

As explained in the previous sections, the windowed pixels
are transferred to the VHDL routine. The routine finds the
average of the 9 input pixel values in the window by
multiplying every pixel by 0.1111 and adding all the results.
This average value then replaces the center pixel given at the
output port of the routine.

Fig. 7. Results from HDL simulation of averaging filter.

Fig. 8. Results from MATLAB simulation of averaging filter

D. Edge Detection
Edge detection is a common approach to detect meaningful

discontinuities in gray level which can be extended to color
intensity levels [4]. In an image, for a point to be classified as
an edge point, its 2dimensional first order derivative should be
greater than a specified threshold. A set of such points that are
connected according to a predefined criterion is defined as an
edge. First order derivatives of a digital image are based on
various approximations of the 2D gradient. This gradient
vector is formed by differentiation of the image information in
the two spatial directions. This gradient points in the direction
of maximum rate of change at
a particular point. In case of Sobel Edge Detection technique,
the derivative in the X-direction is approximated to difference
between the third and first row and the derivative in the Y-
direction is approximated to difference between the first and
third column.

Fig. 9. Results from HDL simulation of Sobel edge detection mask

 Vol. 2, 61

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 10. Results from MATLAB simulation of Sobel edge detection technique

In this simulation, a similar 3-by-3 window is implemented
and a Sobel mask is applied to the input pixel values obtained
by the link. The horizontal and vertical derivatives are
obtained and the gradient vector is calculated. By comparing
the magnitude of this gradient vector with a particular
threshold value, the output pixel is determined.

E. MSE and PSNR values

TABLE I
COMPARISON OF MSE AND PSNR VALUES

NAME MSE PSNR
Pseudocoloring 1.3366 46.8708
Median Filtering 0.0258 64.0095
Smoothing Linear Filters 0.0012 77.2647
Sobel Edge Detection 0.9613 48.3021

III. CONCLUSION AND FUTURE WORK
This paper has demonstrated the simulation of four

algorithms for color image processing on FPGA. A
comparison of results obtained from VHDL and MATLAB
has been made by evaluating Mean Square Error and Peak
Signal to Noise Ratio. Future work would be to extend the
capability of this system to process video data in a continuous
stream obtained frame by frame. Also a hardware
implementation of the above simulated routines would be the
next course of action.

IV. ACKNOWLEDGMENT
The authors gratefully acknowledge the facilities provided

in VLSI Laboratory of Electronics Engineering Department,
Sardar Patel Institute of Technology, Mumbai.

V. REFERENCES

[1] Anthony Edward Nelson, “Implementation of Image Processing

Algorithms on FPGA Hardware,” May 2000, Vanderbilt University,
Nashville, TN.

[2] J. Hammes, A. P. W. Bohm, C. Ross, M. Chawathe, B. Drapper, W.
Najjar, “High Performance Image Processing on FPGAs,” Feb. 2004,
Computer Science Department, Colorado State University, Ft. Collins,
CO, USA.

[3] Bruce A. Draper, J. Ross Beveridge, A. P. Willem Bohm, Charles Ross
and Monica Chawathe, ‘Accelerated Image Processing on FPGAs,’
IEEE Trans. Image Processing, vol.12 pp. 1543-1551, Dec. 2003

[4] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing,”
2002, Pearson Education, Inc.

VI. BIOGRAPHIES

Faheem Desai (N’2007) was born in Mumbai in
India on 1987. He is graduate student of Sardar
Patel College of Engineering, Mumbai. He was the
executive member of the Electronics Students
Association and the chief editor of the annual
departmental magazine. He is also a member of
IEEE. His area of interest includes VLSI design,
image processing and embedded systems.

Rohit Bhat (N’2007) was born in Mumbai in India
on 1986. He is graduate student of Sardar Patel
College of Engineering, Mumbai. He is a member
of the Electronics Students Association. He is also
a member of IEEE. His area of interest includes
VLSI design, image processing and embedded
systems.

Harsh Shah (N’2007) was born in Mumbai in
India on 1987. He is graduate student of Sardar
Patel College of Engineering, Mumbai. He is a
member of the Electronics Students Association.
He is also a member of IEEE. His area of interest
includes VLSI design, image processing and
embedded systems.

S. S. Rathod (M’2007) was born in Amravati in
India on Feb 28, 1975. He graduated from the
College of Engineering Badnera, and completed
his post graduation in the field of Electronics
Engineering from V.J.T.I., Mumbai-India.
Currently he is pursuing his doctoral research at
Indian Institute of Technology, Roorkee-India.

His employment experience includes eight
years as an educationalist. He has published more

that 20 papers in various national and international conferences. His special
fields of interest include VLSI Design, process and device modeling. His
name is listed in the science category of Marques Who’s Who USA. He
received outstanding achieving ward by the Energy Society, India. He is
member of IEEE, ISTE and ISNT.

P. V. Kasambe (M’2007) was born in Yavatmal in
India on Jun 26, 1976. He graduated from the
College of Engineering Badnera, and completed his
post graduation in the field of Electronics
Engineering from SPCE(UA), Mumbai-India.

His employment experience includes eight years
as an educationalist. His special fields of interest
include VLSI Design, process control and
instrumentation. He is member of IEEE, ISTE, ISA

and ISNT.

 Vol. 2, 62

