
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract--The waveform generators being used traditionally

are basically ASIC based. The features of ASIC based embedded
system are not easy to alter. In other words, ASIC based
embedded systems are not reconfigurable. The waveform
generator under discussion here is developed using FPGA.
FPGAs have an unique characteristic namely reconfigurability.
Also this waveform generator is interfaced with serial port of
personal computer using UART (Universal Asynchronous
Receiver Transmitter) protocol. To establish the serial link
between PC and FPGA, UART is implemented in VHDL from
FPGA side and from PC end Visual Basic is used as design
language. Using MSComm component of VB, serial port of PC is
programmed. As a result of this serial link established, the netlist
running inside FPGA can be altered in runtime. This is again an
added advantage of reconfigurable waveform generator.

Key words: Reconfigurable, Runtime updation, FPGA, UART,
Waveform Generator

I. INTRODUCTION
RADITIONALLY used embedded systems are mostly
‘ASIC’ (Application Specific IC) based. Modifying any of

the currently existing system’s characteristics is extremely
complicated. Rather building a new system with modified
characteristics would be cost effective. The use of FPGA in
place of ASIC, gives us facility to reconfigure the system
without much efforts.

Also, developing a new system with actual components,
before even testing it’s characteristics, can be risky at times. In
such situations, use of FPGA is of great help. We can emulate
the new system in FPGA and test it’s characteristics before we
actually build them.

In the system described in this paper, we have interfaced
PC’s serial port with FPGA system. The system developed
can be represented in Fig.1

The major sections of this paper are serial port
communication, algorithms for UART implementation and
waveform generation, simulation results of the system
developed.

Swati Mohite is a Post Graduate Student at the Department of Electronics
Engineering at Fr. C. Rodrigues College of Engineering, Mumbai India (e-
mail: mohiteswati@gmail.com).

II. SERIAL COMMUNICATION

Fig.1 Functional Block Diagram

Although parallel communication is faster than serial
communication, serial communication is cost effective over
parallel communication. Hence for longer distances, serial
communication is preferred.

Fig. 2 shows an example of synchronous serial
communication and Fig. 3 shows an example of asynchronous
serial communication.

Fig.2 Separate Clock and Data

Fig. 3 Asynchronous Transmission

A. Universal Transmitter (UART)
UART is a piece of computer hardware that translates data

between parallel and serial interfaces. Used for serial data
telecommunication, an UART converts bytes of data to and
from asynchronous start-stop bit streams represented as binary
electrical impulses.[1] UARTs are commonly used in
conjunction with other communication standards such as EIA
RS-232. Each UART contains a shift register which is the
fundamental method of conversion between serial and parallel
forms.

Basic implemented components of UART are shown in
Fig. 4.

Reconfigurable Arbitrary Waveform Generator
Swati Mohite

T

 Vol. 2, 76

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

The designed UART consists of the following blocks

1) Transmitter section
2) Receiver section
3) Baud Rate Generator

1) Transmitter Section: The transmitter section is responsible
for transmission of serial data. Fig. 5 shows the flowchart for
transmitter section. This section has the following
components:

a) Transmitter Buffer: It holds the 8 bit data to be
shifted out of the UART. When ‘load’ is pulsed, the 8
bit data available at ‘data in’ bus is loaded into the
buffer. This data is then given to the shift register and
parity generator for further processing.

b) Transmitter Shift Register: When data is loaded into
the buffer, the start, stop and parity bits are appended
to the 8 bit data stream, and data is serially shifted
out of the shift register. The output signal ‘BUSY’
remains high until all the bits are shifted out of the
register.

c) Parity Generator: The parity generator takes the data
loaded into the buffer and generates a parity bit by
simply EXORing all bits of the data stream. The
parity bit obtained is EVEN. This block is only active
when ‘parity_en’ is high or ‘1’.

Fig. 4 Implemented UART Block Diagram

Fig. 5Transmitter Section Flowchart

2) Receiver Section: The Receiver Section converts the serial
data stream back into a parallel data stream. Fig. 6 shows the
state diagram explaining receiver working. This section has
the following components.

a) Receiver Shift Register: When this component
detects the start bit, it begins shifting data into the
shift register. It does so until the required number of
bits is shifted into the shift register.

b) Receiver Buffer: The buffer holds the data until the
next data is not completely received. After the next
data is received the buffer is cleared and new data is
transferred to the buffer.

c) Parity Checker: The parity generator is enabled only
when ‘PARITY_ENABLE’ is high. The parity
generator EXORs the data from the buffer, and
generates a parity bit. It then compares this bit with
that transmitted by the transmitter. If the two do not
match parity error occurs and ‘PARITY ERROR’
signal is made high.

0 0

1
1

0

1

0

1

Reset=1

data=”1111111111”
cnt=0

parity='0'
busy ='0'

load=1 &
busy=0

Parity en=1

Calculate parity bit

data = parity & din & 01

data = 1 & din & 01

Busy =1
Cnt=0

data=1 & data(10 down to 1)
cnt=cnt+1

Cnt=11

Busy=0

 Vol. 2, 77

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 6 Receiver State Diagram

3) Baud Rate Generator: The Baud Rate Generator generates
the internal clock signal by simply dividing the external input
clock frequency by the required amount to obtain the required
baud rate. The generator consists of a counter which performs
the dividing operation. The amount by which the counter
divides the input clock depends on the ‘CNT_LIMIT’ signal.
This bus has a width of sixteen bits, hence the maximum
dividing factor is (216-1) = 65535 . The minimum count
allowed is 2. Fig. 7 shows the flowchart of baud rate
generator.

III. WAVEFORM GENERATOR
The waveform generator developed here is an arbitrary

waveform generator. The waveforms of the traditional
function generator are typically square wave, sine wave,
sawtooth wave. The waveform generator developed here is
capable of generating any random waveform like staircase
waveform. Also, this idea can be extended to any other
random waveform as this waveform generator is
reconfigurable. To interface this digital output to real world, a
digital to analog converter (DAC) is used. The DAC used is
12-bit DAC (AD7541). The digital output of FPGA is given to
DAC and analog output of DAC is seen on digital storage
oscilloscope (DSO). For the sake of illustration of this idea,
three different waveforms are produced.

1) Sawtooth waveform
2) Straircase Waveform
3) Triangular Waveform

Fig. 7 Flow Chart of Baud Rate Generator

A. Sawtooth Waveform Generator
To generate the sawtooth waveform, a 12-bit counter is

used. At every rising edge of clock, counter increases by 1.
This continues till the counter reaches to its highest value
(cnt > = “111111111111”). After counter reaches to its
highest value, counter is reset. This continues in the loop.

Flowchart of sawtooth waveform generation is shown in
Fig. 8.

Fig. 8 Sawtooth Waveform Flowchart

B. Staircase Waveform Generator
To generate staircase waveform, a 12-bit counter is used

along with an integer variable. At every rising edge of clock,
integer variable increases by 1. When integer variable (i)
reaches 1000 (which defines width of staircase), counter (cnt)
increases by “000001001110” (which defines height of
staircase) and integer variable is rest to 0. Once counter
reaches its maximum value, it is reset to 0.

Fig. 9 shows the flowchart for staircase waveform
generator.

rst= ?

clk’event
and clk =

“1” ?

cnt =
“111111
111111”

cnt = cnt +
“000000000001”

cnt = “000000000000”

cnt = “000000000000”

1

1

1

IDLE

B1

B2

B3

B4

B5

B6

B7

PARITY

STOP

B0

Parity_en=0
Rx_in=0

Parity_en=1

Reset=1

Counter= "0000000000000001"
 ck_en <= '0'

 Counter=
000000000000000

 ck_en = '1'
 counter = cnt limit

 ck_en = '0'
 counter = cnt_limit-1

clk'event and clk =
'1'

1

0

1
0

 Vol. 2, 78

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 9 Staircase Waveform Flowchart

C. Triangular Waveform Generator
To generate triangular waveform, a 12-bit counter is used.

This counter moves up and down depending on flag value. If
flag is set counter counts in the upward direction; otherwise it
counts in downward direction. Working in detail is explained
in Fig.10.

Fig. 10 Flowchart of Triangular Waveform

IV. RESULTS
All the algorithms, explained above are implemented in

VHDL (VHSIC – Hardware Description Language). The
simulation results of these netlists are shown below. In Fig. 13

we can see the entire system simulation.
We can see in the following simulation result, as per the

received code words, actions are taken. For example, when the
received codeword is “10010000” (rx_in) then the triangular
waveform (waveform) is generated. By default, the waveform
generated is sawtooth waveform. Also, by default, the baud
generated is half the clock frequency.

V. FRONT END USING VISUAL BASIC
Visual Basic is an integrated Development Environment in

which applications can be developed, run, tested and
debugged. The project uses Visual Basic to develop the front
end of project for the end-user. Visual Basic provides the
following advantages:

1) Strong programming language
2) MSCOMM control object for programming and

interfacing the serial port.

A. MSComm Properties
Visual-Basic uses the MSComm control to establish RS-

232 communications between devices. This feature is only
available for Visual Basic’s Professional and Enterprise
editions.

The MSComm control handles the communications by
configuring ports, transferring data, use of handshaking
signals and identifying the control. A brief reference on the
control is provided in table I.

Fig. 11 Simulation Results of Arbitrary Waveform Generator

TABLE I. MSCOMM CONTROL PROPERTIES

MSComm
Control
Property

Description Values
Assigned

Interpretation
of the value

CommPort Sets or gets the number
of the serial port 1 Commport no. 1

is in use.

Settings

Sets or gets the baud
rate, parity, data bits and
stop bits as a comma-
separated string

Refer to Table II

InputMode
Determines whether data
will be read as a string or
in binary form

0 Input mode is
text

HandShaking
Sets or gets the
handshaking protocol to
use

0 None

The CommPort property of MSComm comes into play

clk’event
and clk =

‘1’ ?

rst = ?

cnt = “000000000001”,
 flag = “1”

flag =
?

cnt = cnt +
“000000000001”

cnt = cnt -
“000000000001”

 cnt =
“0111111
11110”?

cnt =
“0000000
00010”?

flag = “0” flag = “1”

1

1

0

0

1

1 1

rst = “1”

?

clk’event
and clk =

“1” ?

i =
1000?

cnt = cnt + “000001001110 ”,
i=0

cnt =
“000001
001110”

cnt = “000000000000”, i = 0

cnt = “000000000000”, i = 0

i = i + 1

0

0

1

1

1

1

 Vol. 2, 79

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

when a user needs to select from a number of available serial
ports for use in communications. The property takes integer
number, representing the port number, as its input. Besides
setting port for communication, it can also let the user know
which port is in use. In order to use this property optimally,
the user has to know how many ports are available in his
computer and their corresponding numbers. Otherwise, the
user can also write a VB code for detecting available ports in
the PC [4].

The Settings property determines the Baud rate, the parity
as well as the number of data bits and stop bits. These
parameters use comma to separate between their respective
values. Table II summarizes the possible values for these
settings, where the items in bold are the default values [4].

From table II above, the values for parity parameter are as
follows:

 “E” stands for even parity, “M” for mark parity, “N” for
no parity, “O” for odd parity and “S” for space parity. The 1.5
and 2 stop bits allow extra time for the receiver to completely
receive the data, which may be useful for receiver with slow
processing capability [4].

Table II. MSComm Settings property value options

MSComm Settings
Parameter Possible Values

Baud Rate (Parameter 1) 110, 300, 600, 1200, 2400, 9600, 14400,
19200, 28800

Parity (Parameter 2) E, M, N, O, S

Data bits (Parameter 3) 3, 4, 5, 6, 7, 8

Stop bits (Parameter 4) 1, 1.5, 2

The steps to be followed for the implementation of

MSComm are as follows:
1) Set the MSComm properties.
2) Open the port.
3) Do respective operation (read/write)
4) Close the port.

After setting all the parameter values as shown in table, we
can use the MSComm object to communicate using serial
port. Fig. 12 shows the snapshot of front end used for this
experimental setup.

Front end provides facility to open and close the port.Also,
baud rate can be varied using drop down menu. Different
waveforms can be selected along with variable frequency
square wave.

VI. CONCLUSION
This technical paper demonstrates that a net-list

downloaded in a FPGA can be updated in run time. This saves
the need of halting the execution and updating the net-list.

Also to develop a new system with new characteristics, use
of FPGA is a great help as a system with unknown
characteristics can be difficult and sometimes dangerous to
handle with.

Fig. 12 Front End using Visual Basic

The idea of this project can be implemented to more real
time applications like Power Electronics. Also, most of the
embedded applications can be replaced by FPGA. This would
be advantageous as FPGAs are reconfigurable.

VII. REFERENCES
[1] Jan Axelson, “Serial Port Complete Programming and circuits for RS-

232 and RS-485 links and networks” Penram International Publishing.
[2] Douglas L. Perry, “VHDL Programming By Example- 4th edition”, Tata

McGraw-Hill Publications.
[3] Voleni A. Pedroni, “Circuit Design with VHDL”, Eastern Economy

Edition
[4] Office 97/Visual Basic: Programmer’s Guide 2004. from

http://msdn.microsoft.com/library/default.asp?url=/library/enus/office97
/html/output/F1/D6/S5B1EB.asp

[5] Russo, Mark F. & Echols, Martin M. 1997, Automating Science and
Engineering Laboratories with VISUAL BASIC, John Wiley &
Sons, Inc., New York

[6] Charles H. Roth, Jr., “Digital Systems Design Using VHDL”, PWS
publishing Company.

VIII. BIOGRAPHY
Swati Mohite graduated from Datta Meghe College of
Engineering, University of Mumbai in the year 2002 with
a Bachelors in Electronic Engineering. She joined Fr. Cr.
Rodrigues College of Engineering, Mumbai as a graduate
student, pursuing Master of Engineering in Electronics
Engineering in the year 2005. Her employment
experience includes being a Lecturer in the Department
of Information Technology at St. Francis Institute of

Technology, and at the Department of Electronics Engineering at Datta
Meghe College of Enginnering, Mumbai. Her special fields of interest include
embedded systems and signal processing.

 Vol. 2, 80

