
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract--Co-simulation for verification has recently been

introduced as an alternative to testbenches and in some cases to
fast prototyping. In embedded systems especially when the
systems are complex enough, the probability of asynchronous
software-hardware communication increases. Modeling of such
system requires realization of hardware on to a reconfigurable
hardware emulator (FPGA). The software can be compiled and
linked to this hardware emulator for co-simulation of the entire
system. To implement this approach we use IMAGE system as
the hardware emulator while Leon multiprocessor as the
embedded system under test (SUT). Evaluated result of initial
prototype hardware in terms of simulation acceleration achieved
during the Co-simulation of multiprocessor system is shown.
System-level simulation is used to demonstrate the real-time
saving during verification of the proposed hardware. The RTL
simulation of the SUT on host estimated a time requirement of
1sec real-time when run for 10 ms. while the same RTL
simulation of the SUT after porting it on to the FPGA was 0.67
sec real-time when run for 10 ms. The performance of this
architecture has been compared to a software implementation
using the same test data set. We achieved an acceleration of 10%
in other words time saving while performing Co-simulation of
the Leon3 multiprocessor system.

Index Terms--Co-simulation, hardware emulator, multi FPGA
board, rapid prototyping.

I. INTRODUCTION
O-SIMULATION for verification has recently been
introduced as an alternative to testbenches and in some

cases to fast prototyping. Traditionally followed approach for
Hardware-software co-simulation is to model the hardware
processor and run the developed software on it. In embedded
systems especially when the systems are complex enough, the
probability of asynchronous software-hardware
communication increases. Modeling of such system requires
realization of hardware on to a reconfigurable hardware
emulator (FPGA). The software can be compiled and linked to
this hardware emulator for co-simulation of the entire system.
This approach enables software to be developed and verified
simultaneously with the system, speeding verification of the

H. M. Raza is Research assistant and PG student with the Department of

Electronics and Computer Science Engineering, Visvesvaraya National
Institute of Technology, Nagpur, INDIA (e-mail: hassan_raza@ece.vnit.ac.in).

R. M. Patrikar is Professor with the Department of Electronics and
Computer Science Engineering, Visvesvaraya National Institute of
Technology, Nagpur, INDIA (e-mail: rajendra@computer.org).

overall system.

To implement this approach we use IMAGE system as the
hardware emulator while Leon multiprocessor as the
embedded system under test (SUT). The work presented in
this paper exploits the possibility of using IMAGE multi
FPGA chip system for rapid prototyping of embedded system.
In this context we map the Hardware component on FPGA
platform while the software component on to the host.
Eventually, hardware architecture of the Leon multiprocessor
has been implemented in a Xilinx Virtex-II FPGA. While API
(Application program interface) is used that leverages the
hardware acceleration unit to run the requisite software on the
hardware. Result of initial prototype hardware in terms of
simulation acceleration achieved during the Co-simulation of
complete multiprocessor system is shown to evaluate its
performance.

In section 2, work related to use of co-simulation as a
verification tool are briefly described. Exploration of IMAGE
hardware accelerator system as a mean to performing the
hardware/software co-design simulation has been discussed in
section 3. Verification of multiprocessor system (Leon
multiprocessor SPARC V8 architecture) achieved by co-
simulation has been presented in section 4. Finally, results of
System-level simulation are shown in section 5, to
demonstrate the real-time saving during verification of the
proposed hardware.

II. RELATED WORK
In addition to simulation and other forms of traditional

design verification, Hardware emulator plays an increasingly
important role in the hardware simulation of today’s digital
systems. Similarly Multiple-processor in FPGA enables a
more efficient use of processing power by partitioning tasks
based on time and power. Using hardware accelerator for
prototyping of a Multiprocessor seems to be a break through
step and a new approach for system verification in digital
design. Although during the recent decade outstanding
contribution in the similar field has been witnessed, but
verification of multiprocessor system using
Hardware/Software co-simulation approach in reconfiguration
environment was missing. Contribution by M. Porrmann et al
group [1] describes a dynamically reconfigurable hardware
accelerator for the simulation of self-organizing feature maps
with scalable FPGA modules. The system achieves a

Verification of Multiprocessor system using
Hardware/Software Co-simulation

Hassan M Raza and Rajendra M Patrikar

C

 Vol. 2, 85

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

maximum performance of more than 50 GCPS (Giga
Connections per Second) a due inspiration for IMAGE.
Yuichi Nakamura et al group [2] presented hardware/software
co-verification method for System-On–a-Chip, based on the
integration of a C/C++ simulator and an FPGA emulator.
They describe the application of this environment to the
verification of SoC, supporting concurrent hardware and
embedded software development. James A. Rowson [4] put
forward techniques available for co-simulation with an eye
toward the strengths and weaknesses of each, according to
him fastest raw performance comes from emulator at the cost
of limited access into the emulated hardware for debugging
and visibility into the internal states of the add-on standard
products. We propose to introduce a union of these three
distinct approaches to verify the multiprocessor system using
IMAGE [5] which provides facility of internal signal
monitoring and at the same time C interface for debugging the
emulated hardware. Other works dealing indirectly with
simulation accelerator and Hardware/Software co-simulation
are presented in [3] by different group.

III. IMAGE SYSTEM FOR CO-SIMULATION
In this section exploration of IMAGE hardware accelerator

system as a mean to performing the hardware/software co-
design simulation is described.

1) Introduction of IMAGE system
2) Verification can be performed on IMAGE
3) Rapid prototyping of Multiprocessor system

A. IMAGE system - Introduction
In this work we had used IMAGE system as our Hardware

Software Co-design platform. IMAGE is a product
manufactured by Powai Lab [5]. It can be used as behavioral
or RTL simulation acceleration platform that can accelerate
the simulation performance rate 1000x as compared to any
software simulator available in the market today. Thus one
can meet the verification goals of a design/verification team in
a short period of time. IMAGE is a seamless solution that
simulates our design in the same manner as traditional
software simulator. However, it maps an entire design (or part
of a design) onto hardware to achieve this dramatic
improvement in performance. IMAGE can currently
accelerate up to 2.4 million gate designs with 24 MB
(megabytes) RAM. This architecture can scale up to 40
million gate designs for higher range.

Image comes equipped with the IMAGE Communication
Software, IMAGE Mapping Tools and the IMAGE hardware
box. The Communication Software communicates with the
simulator and the IMAGE hardware box, the mapping tools
move the design to the IMAGE hardware, and the IMAGE
hardware comprises of a highly parallel architecture using
very high speed and high density FPGAs on multiple boards,
It also provides special feature by which we can monitor
internal signal, force value to internal signal and call external
memory available on its hardware.

B. Verification on IMAGE
IMAGE system uses Xilinx Virtex-II series

XC2v4000F115 FPGAs as hardware while C API
(Application Program Interface) to run the software on the
hardware platform. IMAGE board is designed for use through
PCI slot, keeping in mind the data rates and PCI operation
frequency. IMAGE configuration used for Co –design
comprised of two FPGAs with on board physical SRAM of
8MB distributed as 2MB of 3 Integrated Chips on board. This
2MB SRAM is available as 512K X 16 so if we have to
access it SRAM of 2MB than we should have 19 Bit address
ready with data, to feed to those many locations. One can
access them only through set of component instantiations in
your VHDL / Verilog program before using them. They are
accessible in the form of 2MB each not as a whole 8MB at
once. Meaning to use 8MB of memory on board user will
have to declare routine four times with different reference
name. IMAGE communication software keeps track of those
references.

Fig. 1. Block diagram of IMAGE board.

The block diagram with 2 Xilinx FPGA and 8 MB external

memory is shown in figure1.
IMAGE flow uses script based command for performing

the simulation using MODELSIM tool. The simulation result
on the hardware produce the same result as the simulation of
model in a standard VHDL simulator with acceleration.

C. Rapid prototyping for co-simulation
As discussed before for getting simulation acceleration we

map the SUT (System under Test) on the FPGAs and perform
hardware simulation. Multiple FPGAs with high speed
interconnect increases the usability of the board for
prototyping. Apart from synthesis of the SUT, Mapping, Place
& Route and Hex file generation is done using Xilinx XST
and ISE, while the programming is done using Xilinx

 Vol. 2, 86

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

IMPACT. IMAGE uses its pre compiled library to instantiate
the external memory. So for a multiprocessor co-design
environment this memory serves the need of external main
memory. An external debug host can access the Debug Unit of
the processor through several different interfaces, such as a
serial UART (RS232), JTAG, PCI, Ethernet or IMAGE API
(Application Programmable Interface) in our case. The
interface of the processor communicates with the host through
the IMAGE API which is 11 in number. So when we say
prototyping of multiprocessor system on hardware, it
comprises of the complete system being configured on to the
hardware (here FPGA) along with the software running on it.
To get the optimum utilization of the resource the design must
be partitioned in such a way so to incorporate the design using
the full resource utilized without any spill off. SRAM required
for the system is the 8 MB memory (4 module of 2 MB each)
present on the IMAGE board.

IV. VERIFICATION OF LEON MULTI-PROCESSOR SYSTEM
Verification of Leon multiprocessor [6] SPARC V8

architecture achieved by co-simulation is discussed in this
section. Initial about Leon3 multiprocessor and its
architecture, than how co-simulation of HW and SW is can be
done.

A. Leon multiprocessor
Leon3MP is 32 bit SPARC V8 compliant freely distributed

core. It is a simple extension of Leon3 processor architecture
as shown in Figure 3. The debug support and interrupt
handling is implemented separately for each LEON3
instantiation using a generate statement in a multi-processor
system. There is only one debug support unit (DSU) in the
design, supporting multiple LEON3 processors and only one
interrupt controller, supporting multiple LEON3 processors.
LEON3 processor implements a debug mode during which the
pipeline is idle and the processor is controlled through a
special debug interface. Debug Support Unit (DSU) is used to
control the processor during debug mode. DSU acts as an
AHB slave and can be accessed by any AHB master. An
external debug host can therefore access the DSU through
several different interfaces. Such an interface can be a serial
UART (RS232), JTAG, PCI, USB or Ethernet. DSU supports
multi-processor systems and can handle up to 16 processors

So here we targeted DSU for booting linux and loading
design configuration, and for application development/
testing. We kept only core of Leon3MP design to save
resources on IMAGE co-design platform. We now focus our
attention to booting such multiprocessor design. There are
three ways to boot kernel for multiprocessor, after all its
configurations are read by processor through its various
configuration registers.

 Through its external PROM
 Through Memory
 Through Debug Support Unit (by default)

We actually wanted to have full configurability in our

hand, so that after porting Linux kernel we should also have
provision to add drives/application to multiprocessor design.
We used DSU for booting processors configuration. Snapgear
[7] distribution was used which has port for kernel version
2.6.11 for Leon3 Linux port with some modification for our
co-design platform.

B. Co-simulation of Leon multiprocessor
Here we place two Leon3 processor, Debug support unit,

Asynchronous memory controller and High Speed Bus (HSB)
controller on to the FPGA. Leon3 MP can be configured to
boot from an internal prom or from the debug support unit. By
asserting DSUEN and DSUBRE at reset time, the processor
will directly enter debug mode without executing any
instructions. The system can then be initialized from the
communication link, and applications can be downloaded and
debugged. We tested our compiled kernel on TSIM, which is
actually the Leon2/3 emulator. Compiled using SPARC cross
compiler provided with Snapgear distribution. After testing
kernel successful boot on emulator configured with similar
configuration as we had for our design. To talk to DSU at
some baud rate pre-configured in the configuration file we are
provided with Remote monitor RDBMON. This synchronizes
with DSU on some standard boards only, and is designed for
use at serial port not at PCI slot. So we had to write our own
remote monitor unit to communicate with DSU referred as
CMON, since source code for RDBMON is not distributed
freely.

Fig. 2. Co-simulation of Leonmp on IMAGE.

Snapgear distributed port of Linux after successful

compilation gives kernel image to be used for test with TSIM,
DSU, RAM, etc. in ELF (Executable and linking) format.
DSU has in built provision to extract headers and data
segments. With simple file handling in C and keeping in mind
Endean (Big/Small) of host platform and target platform, and
IMAGE API’s we communicated to design on IMAGE
platform. After resetting Multiprocessor on board and
applying appropriate signals to DSU we loaded kernel image

 Vol. 2, 87

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

on board. With an intermediate routine running in the form of
CMON to direct and collect the outputs from DSU on IMAGE
platform vice versa, and display it to host computer prompt.
We verified whole setup of hardware software co-design
execution by attempting various command in busy box tools.

Fig. 3. HW/SW partitioning of Leonmp system.

To achieve the HW/SW co-simulation we partitioned the
whole multiprocessor system into hardware component and
software component according to the system specification and
feasibility of the tools used.

C. Work done
Accordingly the hardware part was modeled using VHDL

while software using C language. The VHDL code of the
complete system was run through the complete IMAGE flow
where by it is first analyzed by the analyzer than synthesized
using Xilinx ISE than mapped on to the FPGA of the board.
The final script command is

“Image.py -k vhdl -te leon3s -d top -s source -L $LPATH -
sim_tool modelsim -sim_mode gui -synth_tool xilinx –r 2 –
M”

After the command is run the HEX file of complete system
is generated which is configured on the FPGA. Image takes
care of timing and synchronizing information and is mapped
along with the design.

Parallel to this work the booting sequence along with linux
kernel of the multiprocessor is compiled in the leccs-cross
compiler available at gaisler research. The ELF file generated
after this exercise is loaded on to the external memory using
the C Interface of IMAGE. Then the C testbench through C
Interface is used to ignite the processor. Simulation result of
the complete system can than be seen on Modelsim tool.

V. RESULTS
Once the complete flow of IMAGE is run and the hex file

of the software is loaded through the C API we are set to see
the simulation of the complete system on Modelsim tool
evoked by IMAGE.

The RTL simulation of the SUT on host estimated a time
requirement of 1sec real-time when run for 10 ms. while the
same RTL simulation of the SUT after porting it on to the
FPGA was 0.67 sec real-time when run for 10 ms. The
performance of this architecture has been compared to a
software implementation using the same test data set. We
achieved an acceleration of 10% in other words time saving
while performing Co-simulation of the Leon3 multiprocessor
system.

Figure 4 shows the screen shot of the multiprocessor first
boot on the IMAGE system with two Leon3 processors as
AHB (Advance High performance Bus) masters, 1 Mb cache
memory, 1 Mb external memory and general purpose I/O port.

Fig. 4. Modelsim screen shot on IMAGE showing simulation of Leon
multiprocessor system.

VI. CONCLUSION
Multiprocessor in FPGAs provides good system

integration, partitioning the system between hardware and
software adds flexibility to the system. Designers can
implement the system’s software components in the embedded
processors and implement the hardware components in the
FPGAs general logic resources with a Host to verify the
system Integrity. Using hardware accelerator for rapid
prototyping of multiprocessor system seems to be futuristic
step for Hardware/Software co-design and an inevitable
platform for cycle accurate and fast co-simulation. While
synthesizing multiprocessor on hardware accelerator it is seen

 Vol. 2, 88

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

that modeling its memory component requires large
simulation time. If we partion the design in such a way so as
to keep the memory component in the software side while rest
of the hardware on board. We get faster simulation as
compared to placing the complete system on the board. While
modeling the clock intensive module in hardware accelerator
requires more computational time for synthesis. An
approximate time for synthesis of the complete system is as
follows
Memory module - 70%
Clock module - 10%
Remaining design - 10% of the overall synthesis time.

VII. REFERENCES
[1] M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski and U. Rückert.

A Reconfigurable SOM Hardware Accelerator. ESANN'2002
proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-26 April 2002, d-side publi., ISBN 2-930307-02-
1, pp. 337-342.

[2] Yuichi Nakamura, Kouhei Hosokawa, Ichiro Kuroda, Ko Yoshikawa
and Takeshi Yoshimura. A Fast Hardware/Software Co-Verification
Method for System-On-a-Chip by Using a C/C++ Simulator and FPGA
Emulator with Shared Register Communication. ESANN'2002
proceedings - DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006.

[3] Young-Il Kim, Wooseung Yang, Young-Su Kwon and Chong-Min
Kyung. Communication-Efficient Hardware Acceleration for Fast
Functional Simulation. Proceedings of the 41st annual conference on
Design automation San Diego, CA, USA, 2004, SESSION: Advances in
accelerated simulation pp. 293 – 298.

[4] James A. Rowson “Hardware/Software Co-Simulation” 31ST
ACM/IEEE Design Automation Conference 1994 ACM 0-89791-653-
0/94/0006 3.50.

[5] Powai Labs, “The high quality, affordable and robust price-performance
Simulation Accelerator and Emulators,” Available at
http://www.powailabs.com.

[6] Gaisler research “Product LEON processor, a 32-bit synthesizable
processor core based on the SPARC V8 architecture,” Available at
http://www.gaisler.com/cms/index.php

[7] SnapGear Embedded Linux, “SnapGear Linux is a full source package,
containing kernel, libraries and application code for rapid development
of embedded Linux systems,” Available at
http://www.gaisler.com/cms/index.php.

VIII. BIOGRAPHIES

 Hassan M. Raza is Working as Research assistant at
Electronics and Computer Science Department and also
doing his Masters from Visvesvaraya National Institute
of Technology, Nagpur. He completed his bachelor of
Engineering from YCCE, Nagpur. His areas of research
are Reconfigurable multiprocessor design and
verification.

Rajendra M Patrikar is working as Professor at
Electronics and communication Department,
Visvesvaraya National Institute of Technology, Nagpur,
INDIA. His areas of interest are VLSI design and
Technology, VLSI design automation

 Vol. 2, 89

