
Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Abstract - Digital filtering algorithms are most commonly
implemented using general purpose digital signal processing
chips or special purpose digital filtering chips and application-
specific integrated circuits (ASICs) for higher rates. Filtering
data in real-time requires dedicated hardware to meet
demanding time requirements. If the statistics of the signal are
not known, then adaptive filtering algorithms can be
implemented to estimate the signals statistics iteratively. Modern
field programmable gate arrays (FPGAs) include the resources
needed to design efficient filtering structures.

This paper describes an approach to the implementation of
digital filter algorithms based on reconfigurable platform i.e.
field programmable gate arrays (FPGAs). Advancements in Field
Programmable Gate Arrays provide new options for DSP design
engineers. The FPGA maintains the advantages of custom
functionality like an ASIC while avoiding the high development
costs and the inability to make design modifications after
production. The FPGA also adds design flexibility and
adaptability with optimal device utilization while conserving both
board space and system power, which is often not the case with
DSP chips. When a design demands the use of a DSP, or time to
market is critical, design adaptability is crucial, and then FPGA
may offer a better solution.

Index Terms--Adaptive filters, Adaptive signal processing,
Digital filters, Digital signal processors, Field programmable gate
arrays, Filtering

I. INTRODUCTION
There are many advantages to hardware that can be

reconfigured with different programming files. Dedicated
hardware can provide the highest processing performance, but
is infl1exible for changes. Reconfigurable hardware devices
offer both the flexibility of computer software, and the ability
to construct custom high performance computing circuits. The
hardware can swap out configurations based on the task at
hand, effectively multiplying the amount of physical hardware
available.

The most obvious problem in custom VLSI approach is the
lack of flexibility. Custom devices are often suited only for
use in a particular application, and cannot be easily
reconfigured for other operations even within that same
domain. Another problem, which the custom VLSI approach
often imposes, is a lack of adaptability once a device is in use

Prof. Dr. M. S. Sutaoane, is with Government College of

Enginnering,Pune-5,Maharashtra,India. (e-mail: mssutaone@gmail.com).
Prof. M. B. Mali,is with Sinhgad College of Engineering,Pune-41,

Maharashtra,India. (e-mail: madanmali@gmail.com).
Sunita R. Deo is with Sinhgad College of Engineering,Pune-41,

Maharashtra,India. (e-mail: sunit_sagat2002@yahoo.com).

within a system. Although some problems can be overcome
with sufficient forethought, the costs in performance,
implementation complexity, and additional design time often
preclude flexible solutions.

Lack of flexibility can forestall the cost-effective
evaluation of exotic algorithms in a high performance real-
time environment. Only high volume applications or
extremely critical low volume applications can justify the
expense of developing a full custom solution. There are a
variety of algorithms which are not within the performance

envelope of general purpose processors, and which are not
sufficiently commonplace or well-understood to justify
implementation in a full custom design. These algorithms
cannot be evaluated with the traditional approaches.

The advantages of the FPGA approach to digital filter
implementation include higher sampling rates than are
available from traditional DSP chips, lower costs than an
ASIC for moderate volume applications, and more flexibility
than the alternate approaches.

II. BACKGROUND

A non-adaptive filter has predefined function i.e. it may be
low pass, high pass, band pass or band stop filter. However
features such as noise in the environment may affect the
filtered result. Adaptive filters on the other hand, may be
designed to adjust to their environment such that the filter may
adapt to noise so as to produce the desired result. Adaptive
filters learn the statistics of their operating environment and
continually adjust their parameters accordingly.

In practice, signals of interest often become contaminated
by noise or other signals occupying the same band of
frequency. When the signal of interest and the noise reside in
separate frequency bands, conventional linear filters are able
to extract the desired signal [1]. However, when there is
spectral overlap between the signal and noise, or the signal or
interfering signal’s statistics change with time, fixed
coefficient filters are inappropriate. Fig. 1 shows an example
of a wideband signal whose Fourier spectrum overlaps a
narrowband interfering signal.

VLSI Implementation of Adaptive Filter
On Reconfigurable Platform

M.S. Sutaoane , M.B.Mali and Sunita R. Deo

 Vol. 2, 100

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 1. A strong narrowband interference N(f) in a wideband signal S(f)

This situation can occur frequently when there are various

modulation technologies operating in the same range of
frequencies. In fact, in mobile radio systems cochannel
interference is often the limiting factor rather than thermal or
other noise sources. It may also be the result of intentional
signal jamming, a scenario that regularly arises in military
operations when competing sides intentionally broadcast
signals to disrupt their enemies’ communications.
Furthermore, if the statistics of the noise are not known a
priori, or change over time, the coefficients of the filter cannot
be specified in advance. In these situations, adaptive
algorithms are needed in order to continuously update the
filter coefficients.

The desired result is itself given in the filter’s
specifications. This tells the type of filter and the type of input
signals that the filter can handle. However if we wish to a
more flexible filter design then the filter type itself should be
adjustable. This may be adjusted to cope with different input
signals so as to produce the desired output signal or the
specification of the filter itself may be changed to change the
desired output signal [1].

A. Adaptive filter Algorithm – Least Mean Square (LMS)
The Least Mean Square adaptive algorithm is a simple

well-behaved algorithm, which is commonly used in
applications where a system has to adapt to its environment.

Fig. 2. Block diagram of an adaptive filter

Fig. 2 shows a block diagram of how an adaptive filter can
be formulated in an equalizer setting. In this case, the filter w
is adapting to produce an output sequence which is
identical to a known output d[n]. The filter w as being of FIR
type, with p coefficients, i.e.

 (1)
The subscript n indicates that the filter coefficients

themselves vary with time. The adaptation algorithm
calculates the update based on knowledge of the input, and on
an error signal e. During training, such a signal can be
generated by using a known training sequence at both receiver
and transmitter. The Least Mean Square (LMS) Algorithm is
the most widely used technique to find an update equation for
the system shown in Fig. 2.

For the LMS algorithm, the coefficient vector update
equation becomes:

 (2)

where

 (3)

and µ is a scalar vector called step size.
Because of the ability of adaptive filter to perform well in

unknown environments and track statistical time variations,
adaptive filters have been employed in a wide range of fields
However, there are essentially four basic classes of
applications for adaptive filters. These are: Identification,
inverse modeling, prediction, and interference cancellation,
with the main difference between them being the manner in
which the desired response is extracted. The adjustable
parameters that are dependent upon the applications at hand
are the number of filter taps, choice of FIR or IIR, choice of
training algorithm, and the learning rate [2].

III. FIELD PROGRAMMABLE GATE ARRAY
Traditionally, digital signal processing (DSP) algorithms

are implemented using general-purpose (programmable) DSP
chips for low-rate applications, or special-purpose (fixed
function) DSP chip-sets and application-specific integrated
circuits (ASICs) for higher rates.

The SRAM-based FPGA is well suited for arithmetic,
including Multiply & Accumulate (MAC) intensive DSP
functions. A wide range of arithmetic functions (such as
FFT’s), convolutions, and other filtering algorithms) can be
integrated with surrounding peripheral circuitry. The FPGA
can also be reconfigured on the fly to perform one of many
system level functions. When building a DSP system in an
FPGA, the design can take advantage of parallel structures and
arithmetic algorithms to minimize resources and exceed the
performance of single or multiple general-purpose DSP
devices.

Such a device requires 20nsec per Tap to implement a 16-
Tap FIR filter, which translates to a theoretical maximum
(with zero wait-states) sample rate of 3.125 million samples
per second. An In-System Programmable (ISP) FPGA can
also be reconfigured on the board during system operation.
Taking advantage of the reconfigurability feature means a
minimal chip solution can be transformed to perform multiple
functions. For example, an FPGA could be the basis for a
system that performs one of several DSP functions. Suppose,
for instance, one function is to compress a data stream in
transmit mode and another function is to decompress the data

 Vol. 2, 101

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

in receive mode. The FPGA can be reconfigured on the fly to
switch, or toggle, from one function to another. This
capability of the FPGA adds functionality and processing
power to a minimum-chip DSP system controlled with an
internal or an external controller. The FPGA design cycle
requires less hardware-specific knowledge than most DSP
chips or ASIC design solutions. Smaller design groups, with
less experienced engineers, can design larger, more complex
DSP systems in less time than larger design groups with more
experienced engineers who are required to know device
specific programming languages. The FPGA-based DSP
system-level design team can design, test, verify, and ready a
complex DSP system for production in weeks [3],[4].

IV. IMPLEMENTATION
The LMS algorithm introduced in previous section is

described using the flowchart (refer fig. 3) given below [1].

Fig. 3. Flowchart of LMS Algorithm

A. Hardware Implementation of LMS Adaptive Filter
Adaptive filter block diagram is presented below. The filter

is divided into four main blocks i.e. LMS filter, weight update
logic, weight update controller and single tap [9]. The blocks
are shown in fig.4,5,6,& 7 resp. For hardware implementation
of adaptive filter a VHDL code is written for all these
modules. Modelsim simulator is used to simulate the design.
Design is synthesized using Synplify from Libero IDE.

Fig.4. Weight update controller

Fig 5. Center Tap

Fig. 6 LMS Filter

Multiplier
Truncator

Output
Register

Weight
register

Input
register

16
16

16

16

clk u[n]
w[n]]

o[n]

W
ei

gh
t R

eg
is

te
r F

ile

Weight
Update
Logic

 u[n]
 TAP o[n]
 Clk u[n-1]

 u[n]
 TAP o[n]
 Clk u[n-1]

 u[n]
 TAP o[n]
 Clk u[n-1]

 Filter input
 u[n]

 Filter Clk

w[0]

w[1]

w[N-1]

16

16

A
dd

er

y[n
Clk

Comparator

clk
e[n]

y[n]
d[n]

Initialize wk (i) and x ik−

Read xk
 and yk

Filter xk

nk
= ()iwk∑ x ik−

Compute errorek
 = yk

 ‐ nk

Compute factor 2µ ek

Update coefficient

wk 1+
=wk

+ 2µ ek x ik−

 Vol. 2, 102

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

B. Matlab Simulation of Adaptive filter configured in system
identification mode

Here a sinusoidal signal is applied to the adaptive filter as a
desired signal i.e. d(n).A corrupted sinusoidal signal is applied
as an input signal which is composed of desired signal and a
random noise. i.e. x(n) = d(n) + s(n).

Output signal, desired signal and the noisy input signal are
plotted and compared in fig. 8.

C. Matlab Simulation of Adaptive filter configured in noise
reduction mode

A sinusoidal signal contaminated by noise is applied as an
input signal to the adaptive filter. A pure sinusoidal signal is
applied as a desired signal to the same. The LMS algorithm
iterations are executed till the error signal becomes zero. After
successful noise reduction, the spectrum of output signal
available at the output of adaptive filter is same as that of the
spectrum of desired input sinusoidal signal (refer fig.

 Fig. 7. Weight Update Logic

Fig. 8. Matlab Simulation of an adaptive filter configured in system identification mode

16
 b

it
N

x1
 D

M
U

X

W

ei
gh

t R
eg

is
te

r f
ile

 weight
 update
controller

16
 b

it
N

x1
 M

U
X

16 bit Nx1
MUX

Multiplier
Truncator

Adder

e[n]xrate

Address
log2N

Nx16

Nx16

16

16

Nx16

 Vol. 2, 103

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

V. RESULTS
a) Matlab simulation results of adaptive filter

configured in system identification mode are
presented below. As can be seen from the plots, the
output of adaptive filter is exactly same as that of the
FIR filter, which is nothing but the unknown system
after forty iterations. The error plot is also presented
wherein we can see that the error becomes zero and
remains zero after 40 iterations of LMS algorithm. A
random signal is applied as an input to adaptive filter
as well as unknown system (FIR filter 150Hz-
250Hz).

b) Matlab simulation results of adaptive filter

configured in noise reduction mode are presented
below in fig. 9. A sinusoidal signal contaminated by
noise is applied as an input signal to the adaptive
filter. A pure sinusoidal signal is applied as a desired

signal to the same. The LMS algorithm iterations are
executed till the error signal becomes zero. After
successful noise reduction, the spectrum of output
signal available at the output of adaptive filter is
same as that of the spectrum of desired input
sinusoidal signal.

c) VHDL code simulation results for noise reduction

mode of adaptive filter are obtained in fig.10.The
same noisy input signal and desired signal are applied
to the VHDL code of adaptive filter as that of signals
applied to the MATLAB code. Error obtained in
MATLAB simulation is less as compared to error
obtained in VHDL simulation.

Fig. 9. Matlab Simulation of Adaptive filter in noise reduction mode

 Vol. 2, 104

Proceedings of SPIT-IEEE Colloquium and International Conference, Mumbai, India

Fig. 10. VHDL code Simulation of Adaptive filter in noise reduction mode

VI. CONCLUSION
This paper has presented the applications and Matlab

simulations of adaptive filter. The performance of VHDL code
is good but the error reduction obtained by MATLAB code is
greater than VHDL code. It has discussed the FPGA
implementation approach of adaptive filter. General-purpose
DSP implementations often Lack the performance necessary
for moderate sampling rates, and ASIC approaches are limited
in flexibility and may not be cost effective for many
applications. FPGA approach is both flexible and provides
performance comparable or superior to traditional approaches.

VII. REFERENCES
[1] E. C. Ifeachor and B. W. Jervis, Digital Signal Processing, A Practical

Approach, Prentice Hall, 2002.
[2] Haykin Simon, Adaptive filter theory, 4th edition, Prentice Hall, New

Jersey, 2002.
[3] Lin, A.Y.; Gugel, K.S.; Principe, J.C., “Feasibility of fixed-point

transversal adaptive filters in FPGA devices with embedded DSP
blocks”
In proceedings of IEEE International Workshop on
System-on-Chip for Real-Time Applications, 2003.Vol.30 July 2003
Page(s): 157 - 160

[4] Xilinx Inc., “Block Adaptive Filter,”Application Note XAPP 055,
Xilinx, CA, January 9,1997.

[5] Proakis, Manolakis, Digital Signal Processing, 3rd edition, Prentice
Education.

[6] Hardware Description Language.” Wikepedia:
The Free Encyclopedia. 18 May 2004.
http://en.wikipedia.org/wiki/Hardware_description_language.

[7] Dimities Manolakis,Vinay K. Ingle,Stephen M. Kogon, Statistical and
Adaptive Signal Processing ,McGraw-Hill Edition.

[8] Vinay K. Ingle,John G. Proakis, Digital Signal Processing using
MATLAB, BookWare Companion Series.

[9] Ahmed Elhossini, Shawki Areibi,Robert Dony. “An FPGA
Implementation of the LMS Adaptive Filter for Audio Processing” .In
proceedings of IEEE International Conference on Reconfigurable
Computing and FPGA's, 2006. ReConFig 2006. page(s):1-8 Sept.2006

VIII. BIOGRAPHIES

Dr. M. S. Sutaone was born in Nagpur, India on
Aug.18,1964. He received his B.E. degree from Nagpur
University and M.E. & Ph.D. degree from University of
Pune in Electronics and Telecommunication engineering.
 He is working as Asst. Professor in Electronics &
Telecommunication Engg. Dept. of Government college
of Engg., Pune, India. His current research interests are in
Signal processing and VLSI architectures.

M.B.Mali was born in Nasik, India on May 25,1968. He
received his B.E., M.Tech degree from University of
Pune & Department of Electronics, Govt. of India
respectively.
 He is working as Asst.Prof. in E&TC dept. of SCOE,
Pune, India. His current research interests are in Mixed
Signal CMOS VLSI Design.

Sunita Deo was born in Pune, India on July 5,1979.
She received her B.E. degree from University of Pune
& from Electronics & Telecommunication Dept.
 She is pursuing her M.E. degree in electronics at
University of Pune. Her current research interests are in
Adaptive filter implementation on FPGA.

 Vol. 2, 105

